提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中數(shù)學七年級上冊有理數(shù)的加法(一)說課稿

  • 北師大初中數(shù)學九年級上冊復雜圖形的三視圖2教案

    北師大初中數(shù)學九年級上冊復雜圖形的三視圖2教案

    教學目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會根據(jù)三視圖描述原幾何體。教學重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法一、實物觀察、空間想像觀察:請同學們拿出事先準備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談談你的看法。拓展:當你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。

  • 北師大初中數(shù)學九年級上冊正方形的性質(zhì)1教案

    北師大初中數(shù)學九年級上冊正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結:正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結:(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

  • 北師大初中數(shù)學九年級上冊正方形的判定2教案

    北師大初中數(shù)學九年級上冊正方形的判定2教案

    三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學九年級上冊正方形的判定1教案

    北師大初中數(shù)學九年級上冊正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結:對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結:從對角線上分析特殊四邊形之間的關系應充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學九年級上冊線段的比和成比例線段1教案

    北師大初中數(shù)學九年級上冊線段的比和成比例線段1教案

    故線段d的長度為94cm.方法總結:利用比例線段關系求線段長度的方法:根據(jù)線段的關系寫出比例式,并把它作為相等關系構造關于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結:若使四個數(shù)成比例,則應滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉(zhuǎn)化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.

  • 北師大初中數(shù)學九年級上冊線段的比和成比例線段2教案

    北師大初中數(shù)學九年級上冊線段的比和成比例線段2教案

    (三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。

  • 北師大初中數(shù)學九年級上冊相似三角形的周長和面積之比2教案

    北師大初中數(shù)學九年級上冊相似三角形的周長和面積之比2教案

    ●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關系.2. 相似三角形的周長比,面積比在實際中的應用.(二)能 力訓練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質(zhì)解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應用意識.●教學重點1.相似三角形的周長比、面積比與相似比關系的推導.2.運用相似三角形的比例關系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現(xiàn)新的結論,通過比較、分析,應用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)

  • 北師大初中數(shù)學九年級上冊相似三角形的周長和面積之比1教案

    北師大初中數(shù)學九年級上冊相似三角形的周長和面積之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.

  • 北師大初中數(shù)學九年級上冊正方形的性質(zhì)2教案

    北師大初中數(shù)學九年級上冊正方形的性質(zhì)2教案

    1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補 D、對角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

  • 北師大初中八年級數(shù)學下冊異分母分式的加減教案

    北師大初中八年級數(shù)學下冊異分母分式的加減教案

    分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結:最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當分母是多項式時,一般應先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應當乘的單項式,分子也相應地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

  • 北師大初中八年級數(shù)學下冊同分母分式的加減教案

    北師大初中八年級數(shù)學下冊同分母分式的加減教案

    解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結:分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進行運算.三、板書設計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數(shù)的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結果的化簡.在教學中,讓學生參與課堂探究,進行自主歸納,并對易錯點加強練習.從而讓學生對知識的理解從感性認識上升到理性認識.

  • 北師大初中八年級數(shù)學下冊分式的有關概念教案

    北師大初中八年級數(shù)學下冊分式的有關概念教案

    解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結:分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結:分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.

  • 北師大初中八年級數(shù)學下冊分式方程的解法教案

    北師大初中八年級數(shù)學下冊分式方程的解法教案

    【類型三】 分式方程無解,求字母的值若關于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結:分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產(chǎn)生增根;(2)分式方程檢驗的方法.

  • 北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    方法總結:本題結合三角形內(nèi)角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.在假設結論不成立時要注意考慮結論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.解決幾何證明題時,應結合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結論出發(fā),探尋結論成立所需的條件)的方法.

  • 北師大初中數(shù)學八年級上冊用二元一次方程組確定一次函數(shù)表達式1教案

    北師大初中數(shù)學八年級上冊用二元一次方程組確定一次函數(shù)表達式1教案

    故直線l2對應的函數(shù)關系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標系內(nèi)畫出直線l1,l2的圖象如圖,可知點A(0,-1),故S△APO=12×1×2=1.方法總結:此題在待定系數(shù)法的應用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結合起來,既考查了基本知識,又不局限于基本知識.三、板書設計利用二元一次方程組確定一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式:y=kx+b(k≠0);2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b的值,進而得到一次函數(shù)的表達式.通過教學,進一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉(zhuǎn)化.通過對本節(jié)課的探究,培養(yǎng)學生的觀察能力、識圖能力以及語言表達能力.

  • 北師大版小學數(shù)學四年級上冊《加法交換律和乘法交換律》說課稿

    北師大版小學數(shù)學四年級上冊《加法交換律和乘法交換律》說課稿

    1、教學內(nèi)容?!凹臃ń粨Q律和乘法交換律”是北師大版《義務教育課程標準實驗教課書》四年級上冊第四單元的內(nèi)容。書中把兩部分內(nèi)容編排在一起。在備課過程中,根據(jù)教學內(nèi)容和學情我先引導學生觀察發(fā)現(xiàn)加法交換律,然后在學生掌握加法交換律的基礎上遷移過來。讓孩子們大膽猜想,進而驗證,得出乘法交換律。2、加法、乘法交換律在數(shù)學學習中的作用。本單元所學習的幾條運算定律,不僅適用于整數(shù)的加法和乘法,也適用于有理數(shù)的加法和乘法。隨著數(shù)的范圍的進一步擴展,在實數(shù)甚至復數(shù)的加法和乘法中,它們?nèi)匀怀闪?。因此,這些運算定律在數(shù)學中具有重要的地位和作用,被譽為“數(shù)學大廈的基石”。而加法、乘法交換律又是這數(shù)學大廈基石中的基石。

  • 北師大版小學數(shù)學四年級上冊《加法結合律》說課稿

    北師大版小學數(shù)學四年級上冊《加法結合律》說課稿

    學生雖然在此前的學習中,對四則運算中的一些性質(zhì)和規(guī)律有感性的認識,但加法結合律畢竟是屬于理性的總結和概括,比較抽象,學生不易理解和掌握。因此,教師在教學過程中,要利用學生已經(jīng)掌握的知識,讓學生獨立解答,然后引導學生分析、比較不同的方法,并通過自己的舉例發(fā)現(xiàn)規(guī)律,概括出相應的運算律。根據(jù)以上教材內(nèi)容和結構的分析,考慮到學生已有的心理結構特征,我確定了如下教學目標:1、理解并掌握加法結合律,并能夠用字母來表示加法結合律。2、經(jīng)歷探索加法結合律的過程,通過對熟悉的實際問題的解決,進行比較和分析,發(fā)現(xiàn)并概括出運算定律。3、在具體情境中體會應用加法結合律進行簡便計算的實際意義,感受到加法結合律的價值,與日常生活的密切聯(lián)系,形成一定得應用意識。重點:理解并掌握加法結合律,能用字母來表示加法結合律。難點:經(jīng)歷探索加法結合律的過程,發(fā)現(xiàn)并概括出運算定律。

  • 北師大初中數(shù)學八年級上冊應用二元一次方程組——增收節(jié)支1教案

    北師大初中數(shù)學八年級上冊應用二元一次方程組——增收節(jié)支1教案

    因為x3表示手機部數(shù),只能為正整數(shù),所以這種情況不合題意,應舍去.綜上所述,商場共有兩種進貨方案.方案1:購甲型號手機30部,乙型號手機10部;方案2:購甲型號手機20部,丙型號手機20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進貨方案獲利最多.方法總結:仔細讀題,找出相等關系.當用含未知數(shù)的式子表示相等關系的兩邊時,要注意不同型號的手機數(shù)量和單價要對應.三、板書設計增收節(jié)支問題分析解決列二元一次方程,組解決實際問題)增長率問題利潤問題利用圖表分析等量關系方案選擇通過問題的解決使學生進一步認識數(shù)學與現(xiàn)實世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學信息,愿意參與數(shù)學話題的研討,從中懂得數(shù)學的價值,逐步形成運用數(shù)學的意識;并且通過對問題的解決,培養(yǎng)學生合理優(yōu)化的經(jīng)濟意識,增強他們的節(jié)約和有效合理利用資源的意識.

  • 北師大初中數(shù)學八年級上冊應用二元一次方程組——增收節(jié)支2教案

    北師大初中數(shù)學八年級上冊應用二元一次方程組——增收節(jié)支2教案

    答:書包單價92元,隨身聽單價360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價92元,隨身聽單價360元。2)在人民商場購買隨聲聽與書包各一樣需花費現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂??上然ìF(xiàn)金360元購買隨身聽,再利用得到的90元返券,加上2元現(xiàn)金購買書包,共花現(xiàn)金360+2=362(元)。因為362<400,所以也可以選擇在家樂福購買。因為362>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學習反思;(5分鐘,學生思考回答,不足的地方教師補充和強調(diào)。)

  • 北師大初中數(shù)學八年級上冊建立平面直角坐標系確定點的坐標2教案

    北師大初中數(shù)學八年級上冊建立平面直角坐標系確定點的坐標2教案

    活動目的:(1)通過小組討論活動,讓學生理解坐標系的特點,并能應用特點解決問題。(2)培養(yǎng)學生逆向思維的習慣。(3)在小組討論中培養(yǎng)學生勇于探索,團結協(xié)作的精神。第四環(huán)節(jié):練習隨堂練習 (體現(xiàn)建立直角坐標系的多樣性)(補充)某地為了發(fā)展城市群,在現(xiàn)有的四個中小城市A,B,C,D附近新建機場E,試建立適當?shù)闹苯亲鴺讼?,并寫出各點的坐標。第五環(huán)節(jié):小結內(nèi)容:小結本節(jié)課自己的收獲和進步,從知識和能力上兩個方面總結,老師予于肯定和鼓勵。目的:鼓勵學生大膽發(fā)言,敢于表達自己的觀點,同時學生之間可以相互學習,共同提高,老師給予肯定和鼓勵,激發(fā)學生的學習熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習題5.5。B類:完成A類同時,補充:(1)已知點A到x軸、y軸的距離均為4,求A點坐標;(2)已知x軸上一點A(3,0),B(3,b),且AB=5,求b的值。

上一頁123...789101112131415161718下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!