把自然物改造成人造物 1.提問:請小組展示作品,并請別的同學(xué)推想這件作品是怎樣被改造出來的?我們改造后的樹葉是什么樣子的?而改造前的樹葉又是什么樣子的?(教師引導(dǎo)學(xué)生思考并說出自然物變成人造物的過程,采用倒推的方式,結(jié)合現(xiàn)實中的人造物,去推想制成它的原材料,以及這些原材料在自然界中本來的樣子。) 2.提問:生活中還有哪些物品,由自然物被制造成了人造物。(如:演示經(jīng)過加工變成了石碑或石雕;木頭經(jīng)過加工變成了木槌;獸皮經(jīng)過加工變成了皮衣等等)
第一單元 圓1.圓的定義:平面上的一種曲線圖形。2.將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。圓心一般用字母O表示。它到圓上任意一點的距離都相等.3.半徑:連接圓心到圓上任意一點的線段叫作半徑。半徑一般用字母r表示。把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。4.圓心確定圓的位置,半徑確定圓的大小。5.直徑:通過圓心并且兩端都在圓上的線段叫作直徑。直徑一般用字母d表示。6.在同一個圓內(nèi),所有的半徑都相等,所有的直徑都相等。7.在同一個圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。8.在同一個圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的一半。用字母表示為:d=2r r =1/2d 用文字表示為:半徑=直徑÷2 直徑=半徑×2
3.第三個環(huán)節(jié)是:鞏固深化,應(yīng)用新知。首先讓學(xué)生完成課本76頁練習(xí)十三的第一題。主要是檢驗學(xué)生對復(fù)式折線統(tǒng)計圖繪制方法的掌握情況,并能對復(fù)式折線統(tǒng)計圖所表達(dá)的信息進(jìn)行簡單的分析、比較。練習(xí)時,先讓學(xué)生在書上獨立完成,再說一說制圖的正確步驟,我用多媒體演示,并提醒學(xué)生注意最高氣溫和最低氣溫對應(yīng)的折線各用什么表示,還要寫上數(shù)據(jù)和制圖日期,根據(jù)學(xué)生的制作情況,還可以組織學(xué)生討論一下,兩條折線上的數(shù)據(jù)怎樣寫就不混淆了?最后讓學(xué)生看圖回答題中的問題,這里重點幫助學(xué)生弄清“溫差”的含義,另外,在回答最后一個問題時,學(xué)生可能會說“我喜歡看統(tǒng)計圖”,我就重點讓學(xué)生說說為什么喜歡看統(tǒng)計圖?從而讓學(xué)生進(jìn)一步體會復(fù)式折線統(tǒng)計圖的直觀、形象的優(yōu)越性
這樣設(shè)計,既復(fù)習(xí)了新課所必備的舊知,又自然合理地引入新課,一開始就緊緊吸引了學(xué)生的注意力,激發(fā)起學(xué)生的求知欲。(二)探索新知1、質(zhì)數(shù)和合數(shù)的意義(教學(xué)例1)。(1)讓學(xué)生拿出印發(fā)的寫有例1原題的練習(xí)紙,利用學(xué)過的求約數(shù)的方法,寫出1-12每個數(shù)的所有約數(shù)。(2)按照約數(shù)個數(shù)的多少進(jìn)行分類,提出以下問題讓學(xué)生討論:①每一個數(shù)約數(shù)的個數(shù)相同嗎?各有多少個約數(shù)?②按照每個數(shù)的約數(shù)個數(shù)的多少,可以把這些數(shù)分成幾類?你認(rèn)為是一類的用同一符號標(biāo)出來。檢查學(xué)生討論情況并提問:你是怎樣分的?為什么這樣分?每一類各包括了哪幾個數(shù)?讓學(xué)生充分發(fā)表意見,然后師生共同歸納,并用投影出示三種分類情況:
(4)判斷中進(jìn)行教學(xué)內(nèi)容的遞深,形成了反思——學(xué)習(xí)——強(qiáng)化的整個學(xué)習(xí)過程。在學(xué)生做出“6是倍數(shù)”的正確判斷之后,并不簡單換章,而是以此為契機(jī)“教學(xué)找一個數(shù)的因數(shù)”以談話導(dǎo)入,形成知識相互的聯(lián)系與區(qū)別,“談話:必須說清誰是誰的倍數(shù),誰是誰的因數(shù)。所以6可能是某些數(shù)的倍數(shù),也可能是某些數(shù)的因數(shù),那我們就來找一個數(shù)的因數(shù)。你能找出36所有的因數(shù)嗎?”(5)討論互評,自主學(xué)習(xí)放手讓學(xué)生學(xué)習(xí)找一個數(shù)的因數(shù),從無序到有序,從自尋到互學(xué),請學(xué)生板書,學(xué)生評價,“提問:你是用什么方法找到一個數(shù)的因數(shù),可以介紹給大家嗎?還有其他方法嗎?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指導(dǎo),掌握不失總結(jié)如:提問:5為什么不是36的因數(shù)?(因為36÷5不能整除,有余數(shù))
重難點依據(jù)人教版數(shù)學(xué)教材新課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確定了掌握異分母分?jǐn)?shù)加減法的計算法則為教學(xué)重點,因為只有掌握了計算法則,才能進(jìn)行計算。同時,也確定了理解異分母分?jǐn)?shù)加減法計算時必須先通分的算理為教學(xué)難點。 二、說教法我們都知道數(shù)學(xué)是中國教育中一門必修學(xué)科,因此,從小學(xué)數(shù)學(xué)教學(xué)開始,就不僅要使學(xué)生“知其然”,還要使學(xué)生“知其所以然”。我們在以師生既為主體又為客體的原則下,展現(xiàn)獲取理論知識、解決實際問題的思維過程??紤]到五年級學(xué)生的現(xiàn)狀,我主要采取設(shè)置情景教學(xué)法,讓學(xué)生積極主動地參與教學(xué)活動,使他們在活動中得到認(rèn)識和體驗,產(chǎn)生踐行的愿望。當(dāng)然老師自身也是非常重要的教學(xué)資源。教師本人應(yīng)該通過課堂教學(xué)感染和激勵學(xué)生,調(diào)動起學(xué)生參與的積極性,激發(fā)學(xué)生對解決實際問題的渴望,并且要培養(yǎng)學(xué)生理論聯(lián)系實際的能力,從而達(dá)到最佳的教學(xué)效果。
1、教材分析《同分母分?jǐn)?shù)加減法》是人教版五年級下冊第五單元的內(nèi)容。本節(jié)教學(xué)內(nèi)容包括分?jǐn)?shù)加減法的含義、同分母分?jǐn)?shù)加減法的計算方法和連加、連減三個部分。這部分內(nèi)容是在學(xué)生學(xué)習(xí)整數(shù)、小數(shù)加減法的意義及其計算方法,分?jǐn)?shù)的意義和性質(zhì),以及在三年級上冊學(xué)過的簡單的同分母分?jǐn)?shù)加減法的基礎(chǔ)上進(jìn)行教學(xué)的。為異分母分?jǐn)?shù)加減法的學(xué)習(xí)搭好階梯。2、學(xué)情分析相對整數(shù)加減運算而言,分?jǐn)?shù)的加減運算對于大多數(shù)學(xué)生來說是比較困難的,但是學(xué)生對簡單的同分母分?jǐn)?shù)加減法計算有一定基礎(chǔ)。學(xué)生已有一定的生活經(jīng)驗,并有一定的分析和解決問題的能力,會有條理地表達(dá)自己的思考過程。3、教學(xué)目標(biāo)(1)知識與技能:掌握同分母分?jǐn)?shù)加減法的計算方法,理解相同單位的數(shù)相加減的算理及含義,并能夠正確熟練地計算。(2)過程與方法:能夠利用所學(xué)知識解決生活中的實際問題,培養(yǎng)學(xué)生應(yīng)用知識的能力。(3)情感態(tài)度與價值觀:通過小組合作學(xué)習(xí),培養(yǎng)學(xué)生的合作意識和學(xué)好數(shù)學(xué)的信心。
因此,我從學(xué)生已有的生活出發(fā),尋找例子,幫助學(xué)生理解容積的概念。同時也多次提供了實踐機(jī)會,讓學(xué)生自己操作實驗的過程,在操作中感知1升、1毫升的大小和容積單位和體積單位之間的關(guān)系。二、說教學(xué)目標(biāo)1、理解容積的概念,認(rèn)識常用的容積單位,感知1升和1毫升的實際大小,并掌握容積單位、體積單位間的進(jìn)率。2、通過實驗的方法,使學(xué)生經(jīng)歷探究容積單位、容積單位和體積單位之間的關(guān)系的過程。三、教學(xué)重難點:1、建立容積和容積單位概念,知道容積單位和體積單位的關(guān)系。2、會計算容積。四、說教法為了使課堂的主人能活躍起來,我用了自主探究式發(fā)現(xiàn)問題、談?wù)摻涣骱蛯嶒灲虒W(xué)的方法進(jìn)行教學(xué),從而也激發(fā)了學(xué)生的積極性和主動性。五、說學(xué)法:更多的是引導(dǎo)學(xué)生在自主嘗試、觀察、討論和探究中獲取知識。
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時,代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時,是一元二次方程,當(dāng)m__________時,是一元一次方程。四、學(xué)習(xí)體會:五、課后作業(yè)
解:設(shè)需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實際需求,注明自變量的取值范圍.三、板書設(shè)計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數(shù)項,a,b分別稱為二次 項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會方程的模型思想.通過本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進(jìn)一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設(shè)計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識到配方法是理解求根公式的基礎(chǔ).通過對求根公式的推導(dǎo),認(rèn)識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運算能力,并養(yǎng)成良好的運算習(xí)慣.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時,代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長,當(dāng)m>0時,關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.
《打電話》這節(jié)課是人教版小學(xué)數(shù)學(xué)五年級下冊的綜合應(yīng)用。是繼“烙餅問題”、“沏茶問題”“等候時間”之后又一次向?qū)W生滲透運用運籌思想解決實際問題的內(nèi)容。教材的素材是學(xué)生生活中所熟悉的,合唱隊在假期接到一個緊急任務(wù),老師要打電話“盡快”通知到15名隊員。讓學(xué)生幫助老師設(shè)計一個打電話的方案,并從中尋找最優(yōu)的方案。通過這個實踐與綜合應(yīng)用,旨在讓學(xué)生進(jìn)一步體會數(shù)學(xué)與生活的密切聯(lián)系以及優(yōu)化思想在生活中的應(yīng)用,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的能力,同時通過畫圖的方式發(fā)現(xiàn)事物隱含的規(guī)律,培養(yǎng)學(xué)生歸納推理的思維能力。因此,我認(rèn)為,本節(jié)課的目標(biāo)應(yīng)定位于:1、讓學(xué)生嘗試在解決問題的多種方案中尋找最優(yōu)方案。通過動手操作、畫圖模擬等方式發(fā)現(xiàn)事物隱含的規(guī)律;
一、關(guān)于教學(xué)目標(biāo)的確定:第五章的主要內(nèi)容是一元一次不等式(組)的解法及其在簡單實際問題中的探索與應(yīng)用。探索不等式的基本性質(zhì)是在為本章的重點一元一次不等式的解法作準(zhǔn)備。不等式的基本性質(zhì)3更是本章的難點??墒钦f不等式的基本性質(zhì)這個概念既是不等式這一章的基礎(chǔ)概念又是學(xué)生學(xué)習(xí)的難點。因此我選擇此節(jié)課說課。教參指導(dǎo)我們:教學(xué)要注重和學(xué)生已有的學(xué)習(xí)經(jīng)驗和生活實際相聯(lián)系,注重讓學(xué)生經(jīng)歷和體會“從實際問題中抽象出數(shù)學(xué)模型,并回到實際問題中解釋和檢驗”的過程。注重“概念的實際背景與形成過程”的教學(xué)。使學(xué)生在熟悉的實際問題中,在已有的學(xué)習(xí)經(jīng)驗的基礎(chǔ)上,經(jīng)歷“嘗試—猜想—驗證”的探索過程,體會“轉(zhuǎn)化”的思想方法,體會數(shù)學(xué)的價值,激發(fā)學(xué)習(xí)興趣。在教學(xué)中要滲透函數(shù)思想。運用數(shù)學(xué)中歸納、類比的方法,理解方程與不等式的異同點。
3.設(shè)計實驗。怎樣測量一粒黃豆的體積。這是在第二題的基礎(chǔ)上進(jìn)行的一個設(shè)計實驗,再次回到“有趣的測量”,讓學(xué)生不僅會計算,還要會自己想辦法測量生活中的很多不規(guī)則物體的體積,這也是我們這節(jié)課要達(dá)到的目的。練習(xí)完之后教師再適時將學(xué)生帶進(jìn)數(shù)學(xué)萬花筒,感受兩千多年前阿基米德的風(fēng)采,激發(fā)了學(xué)生對數(shù)學(xué)的興趣,增強(qiáng)他們主動探索科學(xué)知識的意識。(四)、總結(jié)回顧評價反思在這一環(huán)節(jié)讓學(xué)生講一講收獲、談一談感受,讓學(xué)生自己評價自己,使學(xué)生體驗到成功探索和解決問題的樂趣,樹立學(xué)好數(shù)學(xué)的信心,為學(xué)生自主探索提供更為廣闊的空間六、說板書設(shè)計本節(jié)課我采用重點內(nèi)容提綱式板書,簡單明了,重點突出。利用不同色彩的區(qū)分吸引學(xué)生的注意力,突出“轉(zhuǎn)化”這一重要思想。
1.要有充分的直觀操作。學(xué)生思維的特點一般的是從感性認(rèn)識開始,然后形成表象,通過一系列的思維活動,上升到理性認(rèn)識。本課的教學(xué)采用直觀操作法,是一個重要的環(huán)節(jié)。2.啟發(fā)學(xué)生獨立思考。學(xué)生是學(xué)習(xí)的主體,只有引導(dǎo)學(xué)生獨立地發(fā)現(xiàn)問題、思考問題、解決問題,才能收到事半功倍的教學(xué)效果。3.講練結(jié)合。4.充分運用知識的遷移規(guī)律,引導(dǎo)學(xué)生掌握新知識。教學(xué)過程:三、說教學(xué)過程:(一)、創(chuàng)設(shè)情境上課前,教師先給大家講一個與今天的學(xué)習(xí)內(nèi)容有關(guān)的故事,希望同學(xué)們認(rèn)真地聽、認(rèn)真地想。故事是這樣的:大象過生日啦!那天來了很多的朋友,有小兔、小猴等等等等,可熱鬧啦!在眾多的朋友中只數(shù)小兔最高興,它樂什么呢?原來它知道了蛋糕的分配方案,認(rèn)為自己分的蛋糕比小猴的大。蛋糕是這樣分配的:分給小兔的蛋糕是棱長10厘米的正方體,分給小猴的蛋糕是棱長1分米的方體。(分別出示兩塊同樣大小的正方體,用10厘米和1分米表示它們的棱長)
說【教學(xué)《內(nèi)容】:北師大版五年級下冊數(shù)學(xué)第七單元《用方程解決問題》的第一課時《郵票的張數(shù)》。說【教材分析】;本節(jié)課是在四年級下冊所學(xué)的字母表示數(shù),初步認(rèn)識方程,會用等式的性質(zhì)解決簡單方程,會列方程解決簡單實際問題的基礎(chǔ)上進(jìn)行教學(xué)的。通過本節(jié)課的學(xué)習(xí),進(jìn)一步理解方程的意義,感受方程的思想方法和價值,經(jīng)歷尋找實際問題中數(shù)量之間的相等關(guān)系,列方程求解的全過程,培養(yǎng)學(xué)生分析問題,解決問題的能力。說【教學(xué)目標(biāo)】:知識和技能:1、通過解決姐弟二人的郵票張數(shù)問題,學(xué)會解形如“aⅹ±ⅹ=b”的方程,進(jìn)一步理解方程的意義。2、會分析簡單實際問題中的數(shù)量的相等關(guān)系,會用方程解決簡單的實際問題。過程和方法:在解決問題的過程中,體會列方程解決問題的優(yōu)點。情感、態(tài)度、價值觀:在解決問題的過程中,體會數(shù)學(xué)的價值,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣。
三、說學(xué)法有效的數(shù)學(xué)學(xué)習(xí)活動不是單純地依賴模仿與記憶,而是一個有目的的、主動建構(gòu)知識的過程。為此,我十分重視學(xué)生學(xué)習(xí)方法的指導(dǎo),在本節(jié)課中,我指導(dǎo)學(xué)生學(xué)習(xí)的方法為:觀察發(fā)現(xiàn)法、動手操作法、自主探究法、合作交流法,讓他們在說一說、擺一擺、填一填、做一做、想一想等一系列活動中探索長方體體積的計算方法。我力求以"長方體、正方體體積"這一數(shù)學(xué)知識為載體,通過學(xué)生主動參與、自主探究、發(fā)現(xiàn)結(jié)論的過程,使學(xué)生的數(shù)學(xué)認(rèn)知結(jié)構(gòu)建立在自己的實踐經(jīng)驗和主動建構(gòu)之上。四、說教學(xué)流程教學(xué)時.我安排了情景引入.揭示課題,自主探究.推導(dǎo)公式,利用關(guān)系.類推公式,鞏固練習(xí).運用公式,全課總結(jié).交流評價五個環(huán)節(jié).(一)激情引趣.揭示課題.首先,通過比較生活中一些物體的大小,復(fù)習(xí)體積概念。