一.教學內(nèi)容。我今天說課的內(nèi)容是新人教版教材小學數(shù)學六年級上冊第一單《分數(shù)乘法》例5《小數(shù)乘分數(shù)》。這部分是教材新增加的內(nèi)容,用一課時進行教學。二.說教材。1.教材分析本部分的教學是在學生掌握了整數(shù)乘法、小數(shù)乘法、分數(shù)乘法、以及整數(shù)和小數(shù)混合運算、簡便計算的基礎之上進行的教學。教學中不僅涉及到分數(shù)與小數(shù)的互化,假分數(shù)與帶分數(shù)的互化,整數(shù)與分數(shù)的互化,而且對如何判斷一個分數(shù)是否能化成有限小數(shù)等知識都會涉及。通過教學本例題要使學生經(jīng)歷探究計算方法的過程,運用多樣化的解題思路開拓學生的計算思維,提高學生的計算能力。為教學例6、例7的分數(shù)混合計算和簡便計算奠定基礎。
探究二:100以內(nèi)數(shù)的大小比較。1、 (媒體出示課本第39頁例8雞蛋圖。)師:看這雞蛋圖,誰知道哪邊的雞蛋多一些?你是怎么比較的?(學生可能回答:(1)根據(jù)雞蛋圖比較。(2)根據(jù)數(shù)的順序比較。(3)根據(jù)數(shù)的組成比較。)(根據(jù)學生回答,點擊○媒體出示答案。)2、 師:剛才我們看著雞蛋圖比較了兩個數(shù)的大小,那如果沒有圖,我們會不會直接比較兩個數(shù)的大小呢?我們請計數(shù)器來幫忙,誰來撥?(媒體出示計數(shù)器)師:誰能來說說每個數(shù)位上數(shù)的意義,再進行比較,說說比較的方法。(學生已經(jīng)有了比較20以內(nèi)數(shù)的大小的基礎,教師引導學生在此基礎上說出:28是由2個十和8個一組成,26是2個十和6個一組成,所以28>26;或者根據(jù)數(shù)數(shù)時28在26后面,所以28>26。)(點擊表示28的計算器圖,媒體出示28是由2個十和8個一組成;點擊表示26的計算器圖,媒體出示:26是由2個十和6個一組成;點擊“26是由2個十和6個一組成”,媒體出示:28>26。)(師板書:28>26)
教學目標:1.讓學生自主探索小數(shù)加、減法的計算方法,理解計算的算理并能正確地進行加、減運算及混合運算。2.使學生理解整數(shù)運算定律對于小數(shù)同樣適用,并會運用這些定律進行一些小數(shù)的簡便計算,進一步發(fā)展學生的數(shù)感。3.使學生體會小數(shù)加、減運算在生活、學習中的廣泛應用,提高小數(shù)加、減計算能力的自覺性。教學重難點:(一)理解小數(shù)加、減法的算理,掌握其計算法則是教學重點.(二)位數(shù)不同的小數(shù)加、減法計算,是學習的難點.第一課時教學目標:1、讓學生生自主探索小數(shù)的加、減法的計算方法,理解計算的算理并能正確地進行加、減及混合運算。2、使學生體會小數(shù)加減運算在生活、學習中的廣泛應用,體會數(shù)學的工具性作用。3、激發(fā)學生學習小數(shù)加減法的興趣,涌動長大后也要為國爭光的豪情,提高學習的主動性和自覺性。
用米作單位,用分數(shù)怎么表示呢?(1/10米)師:1/10米也可以寫成0.1米。師:請同學們看米尺,從0到30,從0到70,應該是幾分米,十分之幾米?用小數(shù)怎樣表示呢?可先和同桌商量商量。學生同桌討論后反饋師根據(jù)反饋結果提問:請同學觀察一下1/10米和0.1米,3/10米和0.3米,7/10米和0.7米之間有什么關系?隨學生的回答出示1/10米=0.1米 3/10米=0.3米 7/10米=0.7米。再讓學生觀察上面的等式,四人小組討論你發(fā)現(xiàn)了什么?使學生通過討論明確:分母是10的分數(shù)可以寫成一位小數(shù),一位小數(shù)表示十分之幾。2、 認識兩位小數(shù) 、三位小數(shù)師:我們已經(jīng)知道了一位小數(shù)表示十分之幾,那么請同學猜一猜兩位小數(shù)與什么樣的分數(shù)有關?三位小數(shù)與什么樣的分數(shù)有關?(具體的步驟和前面相似)讓學生根據(jù)一位小數(shù)表示十分之幾,猜想出兩位小數(shù)和什么樣的分數(shù)有關?有意識地促進“遷移”,使學生在學會的同時學習能力也得到提高。關于計數(shù)單位的教學我個人認為還是放到52頁小數(shù)數(shù)位順序表這里教學比較妥當。
課題十: 解決問題(一)教學內(nèi)容:解決問題教學目標:1、會解決有關小數(shù)除法的簡單實際問題。2、能探索出解決問題的有效方法,并試圖尋找其他方法,能表達解決問題的過程。教學過程:一、引入新課:前面我們學習了小數(shù)除法的計算,那么你會解決下面的問題嗎?(板書課題)二、自主探索(出示例11)1、先獨立思考解答。2、小組內(nèi)交流,可以先算什么?3、小組匯報,全班交流,說說不同的思路。再指名說說。三、鞏固練習1、“做一做”獨立完成,全班交流。再指名說說不同的解題思路。2、完成P34 3師:你從此題中收集到了哪些信息?要解決什么問題?如何思考?生先獨立思考,再小組交流,匯報分析過程。師小結,解答問題時要找準有直接關系的條件或信息。
教學內(nèi)容:整數(shù)乘法運算定律推廣到小數(shù)乘法 (P.12頁例8和“做一做”,練習二第2題。)教學要求: 使學生理解整數(shù)乘法的運算定律對于小數(shù)同樣適用,并會運用乘法的運算定律進行一些小數(shù)的簡便計算。教學重點: 乘法運算定律中數(shù)(包括整數(shù)和小數(shù))的適用范圍。教學難點: 運用乘法的運算定律進行小數(shù)乘法的的簡便運算。教學用具:投影片若干張。教學過程:一、激發(fā):1、計算:25×95×4 25×32 4×48+6×48 102×562、在整數(shù)乘法中我們已學過哪些運算定律?請用字母表示出來。根據(jù)學生的回答,板書:乘法交換律 ab=ba乘法結合律 a(bc)=(ab)c乘法分配律 a(b+c)=ab+ac2、讓學生舉例說明怎樣應用這些定律使計算簡便。(注意學生舉例時所用的數(shù)。)3、出示教材P.9頁的3組算式:下面每組算式左右兩邊的結果相等嗎?
目標: 1、愿意親近小動物,感受新表現(xiàn)方法的趣味。 2、學習用大小不同的圓形和線條組合表現(xiàn)小雞的特征,并用涂色的方法給小雞輪廓上色。準備:1、大背景圖一副(母雞、草墊若干) 2、油畫棒 3、豐富小雞形象的經(jīng)驗過程:一、情景導入1、欣賞背景師:這是雞媽媽剛生下的一個蛋寶寶,我們一起來幫助雞媽媽孵蛋,看看蛋殼里的小雞到底長什么樣了。二、教師師范:雞媽媽孵蛋1、小雞出殼:添畫小雞的外形特征,尖尖嘴、眼睛、翅膀、小腳師:小小蛋兒把門開,尖尖嘴兒鉆出來;小小蛋兒把門開,圓圓眼睛睜開來。師:小雞的嘴巴是什么樣子的呀?(尖尖的,師總結小雞的嘴巴要尖尖的,這樣小雞才能琢破蛋殼鉆出來哦。)師:小雞的眼睛和嘴巴都鉆出來了,小雞的翅膀也想鉆出來,可是蛋寶寶不愿意開門,我們一起請用好聽的話,請他開開門。(小小蛋兒把門開,拍拍翅膀鉆出殼)
[活動準備]1、節(jié)奏卡片。2、蜜蜂、蝴蝶、蜻蜓、螢火蟲的圖片。3、課件:蜜蜂、蝴蝶、蜻蜓、螢火蟲的本領和生活習性。 [活動過程]1、游戲《小蜂窩》。問:是誰飛走了?答:蜜蜂。瞧!蜜蜂又飛來了。2、出示節(jié)奏卡片,引導幼兒按節(jié)奏拍手。出示四種飛蟲的圖片,引導幼兒按語言節(jié)奏說出:x x飛來了,歡迎x x的句子。3、創(chuàng)設情景,理解詩歌內(nèi)容。請小朋友說說都有誰?它們都有什么樣的本領和特點。通過幼兒討論,教師總結四這種昆蟲的本領。讓我們一塊來看看我們說的對不對。引導幼兒觀看課件。
《巧兒我自幼兒許配趙家》這段曾經(jīng)風靡全國的唱腔采用的是“喇叭牌子”。傳統(tǒng)中這個曲牌用嗩吶伴奏,唱詞虛詞襯字多,曲調(diào)簡單粗糙。 初排《劉巧兒》時這段唱曾遭到非議,徐文華在幾種板式都不理想的情況下,提議用這個曲牌,節(jié)奏跳躍靈活,但由于舊評劇中此調(diào)比較庸俗,所以要推陳出新。 經(jīng)改革后的這段“小橋送線”,其前半段,伴奏樂器中去掉嗩吶,改為弦樂,細膩傳情;過門也變化得長短靈活;演唱時也去掉不必要的襯字;后半部有數(shù)板,半說半唱,用高低木魚和三弦襯托;最后幾句對橋下景色的描繪與人物此時的心境融合起來,傳神傳情。
小組交流匯報: ①、20以內(nèi)加減法知識 教師結合學生的問題,引導學生運用不同的方法得出各項活動的總人數(shù),對于有道理的都予以肯定。如結合“踢球有多少人?”可以有多種方法: 生1:從圖上看到守門的有1人,踢球的有的14人,求一共有多少人?列式為1+14=15(人) 生2:黃隊有7人,藍隊有8人,求一共有多少人?列式為7+8=15(人) 生3:戴帽子的隊員有1人,沒戴帽子的有14人,一共有多少人?列式為1+14=15(人) ②、幾和第幾的知識 師:剛才有小朋友提出跑步的分別是第幾名?小朋友們就來當一回裁判,老師指著哪一位小運動員,你們就舉起手中“第幾”的卡片來說說他們的名次。 (三)嘗試統(tǒng)計 按學生對活動的喜好將學生分成五組。 每小組統(tǒng)計所學活動的人數(shù),用笑臉圖片表示,最后每一組把笑臉圖貼到教師出示的大統(tǒng)計圖上。
學生自由編題后,教師出示:蹺蹺板樂園有3個蹺蹺板,每個蹺蹺上有4人在玩,還有7人在旁邊看。蹺蹺板樂園里一共有多少人?(2)全班讀題后提問,題目的已知條件和問題是什么?根據(jù)題目的已知條件,能不能一步就算出蹺蹺板樂園里一共有多少人?(不能)那我們要求“蹺蹺板樂園里一共有多少人?”應該知道什么條件?(有多少人在玩?旁邊有多少人?)大家想一想我們第一步要先算什么?(有多少人在玩蹺蹺板)根據(jù)題目的哪些條件可以求出“有多少人在玩蹺蹺板”?(有3個蹺蹺板,每個蹺蹺板上有4人在玩)怎樣列式?[4X3=12(人)]為什么用乘法計算?(因為它是求3個4是多少,所以用乘法計算)現(xiàn)在我們已經(jīng)知道有12人在玩蹺蹺板,那第二步該算什么?(蹺蹺板樂園里一共有多少人)怎樣列式?[127=19(人)]誰會用一個算式表示?[4X37=19]請一個同學說一說每一步表示的意思。應用題解答完要記住寫答案。
二、說學情分析:在學生學習了位置與方向、面積等有關知識的基礎上,教材安排了“設計校園”的實踐活動。通過設計學生熟悉的環(huán)境──“校園”的過程,進一步鞏固學生已經(jīng)學習的有關知識,讓學生學會應用數(shù)學知識解決實際生活中的問題,培養(yǎng)收集、整理、分析信息的意識和能力,以及愛學校的良好情感。教材以重新設計校園為主題,從收集信息、分析信息、設計方案三個方面安排了整個實踐活動。三、說學習目標和重難點:1、通過學生自主調(diào)查、討論交流尋找出解決問題的方法,最后設計出自己喜歡的校園。2、讓學生更加理解東、西、南、北、東南、西南、東北、西北八個方位,進一步鞏固學生已經(jīng)學習的有關知識。3、讓學生學會應用數(shù)學知識解決實際生活中的問題,培養(yǎng)收集、整理、分析信息的意識和能力,逐步提高解決問題的能力,以及熱愛學校的良好情感。
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結合圖形,運用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構成空間的一個正交基底.
重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數(shù),結果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.
3.下結論.依據(jù)均值和方差做出結論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.
對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學在一次數(shù)學測驗中的總體水平,很重要的是看平均分;要了解某班同學數(shù)學成績是否“兩極分化”則需要考察這個班數(shù)學成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.
一、 問題導學前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關聯(lián)性或相互影響的問題.例如,就讀不同學校是否對學生的成績有影響,不同班級學生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風險,等等,本節(jié)將要學習的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關聯(lián)性問題.
溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現(xiàn)的所有值,在試驗之前不可能確定取何值;可以用數(shù)字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內(nèi)的一切值隨機變量將隨機事件的結果數(shù)量化.3、古典概型:①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數(shù)X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
二、互動交流,理解算法1.出示教科書第22頁的情境圖,提問:他們在干什么?你獲得了什么信息?能提出什么問題?怎樣列式?2.師:今天我們就學習一位數(shù)除三位數(shù)的計算方法。(板書課題:一位數(shù)除三位數(shù))3.師:怎樣計算238÷6呢?你能用估算的方法估計出大致結果嗎?4.學生嘗試獨立完成例3的豎式計算。師:在這道題中被除數(shù)最高位上是2個百,2個百除以6,商不夠1個百怎么辦?師:誰能說一說商3個十的3寫在商的什么位置上?為什么?教師邊板演邊說明:用除數(shù)6去乘3個十,積是18個十,表示被除數(shù)中已經(jīng)分掉的數(shù),寫在23的下面。23減18得5,表示十位上還剩5個十。師:接下來該怎么辦?(把被除數(shù)個位上的8落下來,與十位上的5合起來繼續(xù)除。)師:最后結果是多少?5.啟發(fā)學生想一想:如果一本相冊有24頁,一本相冊能插得下這些照片嗎?2本呢?