四、課堂小結(jié)今天我們一起研究了什么問(wèn)題?板書(shū)課題:求一個(gè)數(shù)比另一個(gè)數(shù)多幾的應(yīng)用題解答這樣的問(wèn)題,應(yīng)該怎樣進(jìn)行分析?在老師的提問(wèn)下,學(xué)生回憶分析思路。最后,小結(jié)上課時(shí)男女學(xué)生小旗的情況,得出數(shù)目后問(wèn):你能根據(jù)今天學(xué)習(xí)的內(nèi)容提出問(wèn)題并列式計(jì)算嗎?教學(xué)反思:求一個(gè)數(shù)比另一個(gè)數(shù)多幾的應(yīng)用題,本節(jié)課屬于計(jì)算教學(xué)。傳統(tǒng)的計(jì)算教學(xué)往往只注重算理、單一的算法及技能訓(xùn)練,比較枯燥。依據(jù)新的數(shù)學(xué)課程標(biāo)準(zhǔn),在本節(jié)課的教學(xué)設(shè)計(jì)上,創(chuàng)設(shè)生動(dòng)具體的教學(xué)情境,使學(xué)生在愉悅的情景中學(xué)習(xí)數(shù)學(xué)知識(shí)。鼓勵(lì)學(xué)生獨(dú)立思考、自主探索和合作交流。尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需求。 在課堂過(guò)程中,還有小部分學(xué)生不能充分地展開(kāi)自己的思維,得到有效的學(xué)習(xí)效果,讓所有的學(xué)生基本都學(xué)會(huì)如何去展現(xiàn)自己的有效的學(xué)習(xí)方式,這是我的教學(xué)目標(biāo)。
[設(shè)計(jì)意圖:鞏固減法的意義,培養(yǎng)學(xué)生初步的思維能力。](2)組織學(xué)生自己先算一算,教師巡視,捕捉學(xué)生學(xué)習(xí)信息,糾正不良學(xué)習(xí)習(xí)慣。[設(shè)計(jì)意圖:通過(guò)巡視,及時(shí)捕捉學(xué)生的學(xué)習(xí)信息,發(fā)現(xiàn)問(wèn)題及時(shí)解決;把培養(yǎng)學(xué)生良好的計(jì)算習(xí)慣、審題習(xí)慣及檢查習(xí)慣落到實(shí)處。](3)組織學(xué)生全班交流計(jì)算方法。組織學(xué)生在全班交流解決計(jì)算“32-2=”的方法,引導(dǎo)學(xué)生理解“32是由3個(gè)十和2個(gè)一組成,從32里去掉2,就剩3個(gè)十,所以32減2等于30”。如果學(xué)生用其他的方法來(lái)計(jì)算,只要正確,也要肯定。[設(shè)計(jì)意圖:同前面一樣,鞏固數(shù)的組成,訓(xùn)練每一個(gè)學(xué)生“述說(shuō)整十?dāng)?shù)加一位數(shù)相應(yīng)減法的計(jì)算過(guò)程”,突破難點(diǎn)。]3.加減法對(duì)比組織學(xué)生比較“30+2=32”和“32-2=30”,并說(shuō)一說(shuō)有什么發(fā)現(xiàn),使學(xué)生認(rèn)識(shí)到“3個(gè)十和2個(gè)一組成32,所以30加2等于32;反過(guò)來(lái),32是由3個(gè)十和2個(gè)一組成,從32里去掉2,就剩3個(gè)十,所以32減2等于30”[設(shè)計(jì)意圖:強(qiáng)化加減法意義的聯(lián)系,培養(yǎng)學(xué)生初步的思維能力。]
教學(xué)目標(biāo)1、通過(guò)教學(xué),學(xué)生懂得應(yīng)用加法運(yùn)算定律可以使一些分?jǐn)?shù)計(jì)算簡(jiǎn)便,會(huì)進(jìn)行分?jǐn)?shù)加法的簡(jiǎn)便計(jì)算.2、培養(yǎng)學(xué)生仔細(xì)、認(rèn)真的學(xué)習(xí)習(xí)慣.3、培養(yǎng)學(xué)生觀察、演繹推理的能力.教學(xué)重點(diǎn)整數(shù)加法運(yùn)算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計(jì)算簡(jiǎn)便.教學(xué)難點(diǎn)整數(shù)加法運(yùn)算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計(jì)算簡(jiǎn)便.教學(xué)過(guò)程設(shè)計(jì)一、復(fù)習(xí)準(zhǔn)備(演示課件:整數(shù)加法運(yùn)算定律推廣到分?jǐn)?shù)加法)下載1.教師:整數(shù)加法的運(yùn)算定律有哪幾個(gè)?用字母怎樣表示?板書(shū):a+b=b+a(a+b)+c=a+(b+c)2.下面各等式應(yīng)用了什么運(yùn)算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教師:加法交換律和結(jié)合律適用于整數(shù)和小數(shù),是否也適用于分?jǐn)?shù)加法呢?這節(jié)課我們就一起來(lái)研究.二、學(xué)習(xí)新課(繼續(xù)演示課件:整數(shù)加法運(yùn)算定律推廣到分?jǐn)?shù)加法)下載1.出示:下面每組算式的左右兩邊有什么關(guān)系?
解析:先利用正比例函數(shù)解析式確定A點(diǎn)坐標(biāo),然后觀察函數(shù)圖象得到,當(dāng)1<x<2時(shí),直線y=2x都在直線y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,則A點(diǎn)坐標(biāo)為(1,2),∴當(dāng)x>1時(shí),2x>kx+b.∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過(guò)點(diǎn)B(2,0),即不等式0<kx+b<2x的解集為1<x<2.故選C.方法總結(jié):本題考查了一次函數(shù)與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在y軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合.三、板書(shū)設(shè)計(jì)1.通過(guò)函數(shù)圖象確定一元一次不等式的解集2.一元一次不等式與一次函數(shù)的關(guān)系本課時(shí)主要是掌握運(yùn)用一次函數(shù)的圖象解一元一次不等式,在教學(xué)過(guò)程中采用講練結(jié)合的方法,讓學(xué)生充分參與到教學(xué)活動(dòng)中,主動(dòng)、自主的學(xué)習(xí).
故直線l2對(duì)應(yīng)的函數(shù)關(guān)系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標(biāo)系內(nèi)畫(huà)出直線l1,l2的圖象如圖,可知點(diǎn)A(0,-1),故S△APO=12×1×2=1.方法總結(jié):此題在待定系數(shù)法的應(yīng)用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結(jié)合起來(lái),既考查了基本知識(shí),又不局限于基本知識(shí).三、板書(shū)設(shè)計(jì)利用二元一次方程組確定一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式:y=kx+b(k≠0);2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b的值,進(jìn)而得到一次函數(shù)的表達(dá)式.通過(guò)教學(xué),進(jìn)一步理解方程與函數(shù)的聯(lián)系,體會(huì)知識(shí)之間的普遍聯(lián)系和知識(shí)之間的相互轉(zhuǎn)化.通過(guò)對(duì)本節(jié)課的探究,培養(yǎng)學(xué)生的觀察能力、識(shí)圖能力以及語(yǔ)言表達(dá)能力.
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個(gè)數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因?yàn)閭€(gè)位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時(shí),14-x=6.所以這個(gè)兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問(wèn)題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個(gè),且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實(shí)際意義,必須舍去.三、板書(shū)設(shè)計(jì)幾何問(wèn)題及數(shù)字問(wèn)題幾何問(wèn)題面積問(wèn)題動(dòng)點(diǎn)問(wèn)題數(shù)字問(wèn)題經(jīng)歷分析具體問(wèn)題中的數(shù)量關(guān)系,建立方程模型解決問(wèn)題的過(guò)程,認(rèn)識(shí)方程模型的重要性.通過(guò)列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問(wèn)題、解決問(wèn)題的能力.經(jīng)歷探索過(guò)程,培養(yǎng)合作學(xué)習(xí)的意識(shí).體會(huì)數(shù)學(xué)與實(shí)際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價(jià)值.
解析:(1)根據(jù)題設(shè)條件,求出等量關(guān)系,列一元一次方程即可求解;(2)根據(jù)題設(shè)中的不等關(guān)系列出相應(yīng)的不等式,通過(guò)求解不等式確定最值,求最值時(shí)要注意自變量的取值范圍.解:設(shè)購(gòu)進(jìn)A種樹(shù)苗x棵,則購(gòu)進(jìn)B種樹(shù)苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購(gòu)進(jìn)A種樹(shù)苗10棵,B種樹(shù)苗7棵;(2)由題意得17-x172,所需費(fèi)用為80x+60(17-x)=20x+1020(元),費(fèi)用最省需x取最小整數(shù)9,此時(shí)17-x=17-9=8,此時(shí)所需費(fèi)用為20×9+1020=1200(元).答:購(gòu)買(mǎi)9棵A種樹(shù)苗,8棵B種樹(shù)苗的費(fèi)用最省,此方案所需費(fèi)用1200元.三、板書(shū)設(shè)計(jì)一元一次不等式與一次函數(shù)關(guān)系的實(shí)際應(yīng)用分類討論思想、數(shù)形結(jié)合思想本課時(shí)結(jié)合生活中的實(shí)例組織學(xué)生進(jìn)行探索,在探索的過(guò)程中滲透分類討論的思想方法,培養(yǎng)學(xué)生分析、解決問(wèn)題的能力,從新課到練習(xí)都充分調(diào)動(dòng)了學(xué)生的思考能力,為后面的學(xué)習(xí)打下基礎(chǔ).
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點(diǎn)E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時(shí),對(duì)應(yīng)的x的兩個(gè)值,從而可確定t的取值范圍.解:(1)由題意得點(diǎn)E的坐標(biāo)為(1,1.4),點(diǎn)B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時(shí),-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實(shí)際問(wèn)題轉(zhuǎn)化為求函數(shù)問(wèn)題,培養(yǎng)自己利用數(shù)學(xué)知識(shí)解答實(shí)際問(wèn)題的能力.三、板書(shū)設(shè)計(jì)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
1.使學(xué)生掌握用描點(diǎn)法畫(huà)出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過(guò)配方確定拋物線的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過(guò)程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點(diǎn)法畫(huà)出二次函數(shù)y=ax2+bx+c的圖象和通過(guò)配方確定拋物線的對(duì)稱軸、頂點(diǎn)坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對(duì)稱軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問(wèn)題1.你能說(shuō)出函數(shù)y=-4(x-2)2+1圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開(kāi)口向下,對(duì)稱軸為直線x=2,頂點(diǎn)坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個(gè)單位再向上平移1個(gè)單位得到的)
(3)設(shè)點(diǎn)A的坐標(biāo)為(m,0),則點(diǎn)B的坐標(biāo)為(12-m,0),點(diǎn)C的坐標(biāo)為(12-m,-16m2+2m),點(diǎn)D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長(zhǎng)AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開(kāi)口向下,∴當(dāng)m=3米時(shí),“支撐架”的總長(zhǎng)有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點(diǎn)選取一個(gè)合適的參數(shù)表示它們,得出關(guān)系式后運(yùn)用函數(shù)性質(zhì)來(lái)解.三、板書(shū)設(shè)計(jì)二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺(tái),還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),使課堂真正成為學(xué)生展示自我的舞臺(tái).充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問(wèn)題、解決問(wèn)題的獨(dú)到見(jiàn)解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過(guò)y軸上的點(diǎn)(0,c),∴兩個(gè)函數(shù)圖象交于y軸上的同一點(diǎn),故B選項(xiàng)錯(cuò)誤;當(dāng)a>0時(shí),二次函數(shù)的圖象開(kāi)口向上,一次函數(shù)的圖象從左向右上升,故C選項(xiàng)錯(cuò)誤;當(dāng)a<0時(shí),二次函數(shù)的圖象開(kāi)口向下,一次函數(shù)的圖象從左向右下降,故A選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)等)是解決問(wèn)題的關(guān)鍵.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
(1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個(gè)為正,則另一個(gè)就用負(fù)表示.理解表中的正負(fù)號(hào)表示的含義,根據(jù)條件計(jì)算出每天的水位即可求解;(2)只要觀察星期日的水位是正負(fù)即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結(jié):解此題的關(guān)鍵是分析題意列出算式,用的數(shù)學(xué)思想是轉(zhuǎn)化思想,即把實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題.探究點(diǎn)二:有理數(shù)的加減混合運(yùn)算在生活中的其他應(yīng)用
三、課后自測(cè):1、如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,BC= 6cm,動(dòng)點(diǎn)P、 Q分別從點(diǎn)A、C出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止;點(diǎn)Q以2cm/s的速度向點(diǎn)D移動(dòng)。經(jīng)過(guò)多長(zhǎng)時(shí)間P、Q兩點(diǎn)之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點(diǎn)D從點(diǎn)A開(kāi)始沿邊AB以2cm/s的速度向點(diǎn)B移動(dòng),移 動(dòng)過(guò)程中始終保持DE∥BC,DF∥AC,問(wèn)點(diǎn)D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)在其所處的位置 O點(diǎn)的正北方向10海里外的A點(diǎn)有一涉嫌走私船只正以24海里/時(shí)的速度向正東方向航行,為迅速實(shí)施檢查,巡邏艇調(diào)整好航向,以26海里/時(shí)的速度追趕。在涉嫌船只不改變航向和航速的前提下,問(wèn)需要幾小時(shí)才 能追上( 點(diǎn)B為追上時(shí)的位置)?
【教學(xué)目標(biāo)】(一)教學(xué)知識(shí)點(diǎn)能夠利用描點(diǎn)法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).(三)情感態(tài)度與價(jià)值觀:通過(guò)學(xué)生自己的探索活動(dòng),達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解. 【重、難點(diǎn)】重點(diǎn) :會(huì)畫(huà)y=ax2的圖象,理解其性質(zhì)。難點(diǎn):描點(diǎn)法畫(huà)y=ax2的圖象,體會(huì)數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時(shí)15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們?cè)诮虒W(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡(jiǎn)單的二次函數(shù)y=x2入手去研究
雨后天空的彩虹、河上架起的拱橋等都會(huì)形成一條曲線.問(wèn)題1:這些曲線能否用函數(shù)關(guān)系式表示?問(wèn)題2:如何畫(huà)出這樣的函數(shù)圖象?二、合作探究探究點(diǎn):二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫(huà)法及特點(diǎn)在同一平面直角坐標(biāo)系中,畫(huà)出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說(shuō)出拋物線(1)(2)的對(duì)稱軸、頂點(diǎn)坐標(biāo)、開(kāi)口方向及最高(低)點(diǎn)坐標(biāo).解析:利用列表、描點(diǎn)、連線的方法作出兩個(gè)函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點(diǎn)、連線可得圖象如下:(1)拋物線y=x2的對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向上,最低點(diǎn)坐標(biāo)為(0,0);(2)拋物線y=-x2的對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向下,最高點(diǎn)坐標(biāo)為(0,0).方法總結(jié):畫(huà)拋物線y=x2和y=-x2的圖象時(shí),還可以根據(jù)它的對(duì)稱性,先用描點(diǎn)法描出拋物線的一側(cè),再利用對(duì)稱性畫(huà)另一側(cè).
(3)移項(xiàng)得-4x=4+8,合并同類項(xiàng)得-4x=12,系數(shù)化成1得x=-3;(4)移項(xiàng)得1.3x+0.5x=0.7+6.5,合并同類項(xiàng)得1.8x=7.2,系數(shù)化成1得x=4.方法總結(jié):將所有含未知數(shù)的項(xiàng)移到方程的左邊,常數(shù)項(xiàng)移到方程的右邊,然后合并同類項(xiàng),最后將未知數(shù)的系數(shù)化為1.特別注意移項(xiàng)要變號(hào).探究點(diǎn)三:列一元一次方程解應(yīng)用題把一批圖書(shū)分給七年級(jí)某班的同學(xué)閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個(gè)班有多少學(xué)生?解析:根據(jù)實(shí)際書(shū)的數(shù)量可得相應(yīng)的等量關(guān)系:3×學(xué)生數(shù)量+20=4×學(xué)生數(shù)量-25,把相關(guān)數(shù)值代入即可求解.解:設(shè)這個(gè)班有x個(gè)學(xué)生,根據(jù)題意得3x+20=4x-25,移項(xiàng)得3x-4x=-25-20,合并同類項(xiàng)得-x=-45,系數(shù)化成1得x=45.答:這個(gè)班有45人.方法總結(jié):列方程解應(yīng)用題時(shí),應(yīng)抓住題目中的“相等”、“誰(shuí)比誰(shuí)多多少”等表示數(shù)量關(guān)系的詞語(yǔ),以便從中找出合適的等量關(guān)系列方程.
活動(dòng)目的:(1)通過(guò)小組討論活動(dòng),讓學(xué)生理解坐標(biāo)系的特點(diǎn),并能應(yīng)用特點(diǎn)解決問(wèn)題。(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣。(3)在小組討論中培養(yǎng)學(xué)生勇于探索,團(tuán)結(jié)協(xié)作的精神。第四環(huán)節(jié):練習(xí)隨堂練習(xí) (體現(xiàn)建立直角坐標(biāo)系的多樣性)(補(bǔ)充)某地為了發(fā)展城市群,在現(xiàn)有的四個(gè)中小城市A,B,C,D附近新建機(jī)場(chǎng)E,試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫(xiě)出各點(diǎn)的坐標(biāo)。第五環(huán)節(jié):小結(jié)內(nèi)容:小結(jié)本節(jié)課自己的收獲和進(jìn)步,從知識(shí)和能力上兩個(gè)方面總結(jié),老師予于肯定和鼓勵(lì)。目的:鼓勵(lì)學(xué)生大膽發(fā)言,敢于表達(dá)自己的觀點(diǎn),同時(shí)學(xué)生之間可以相互學(xué)習(xí),共同提高,老師給予肯定和鼓勵(lì),激發(fā)學(xué)生的學(xué)習(xí)熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習(xí)題5.5。B類:完成A類同時(shí),補(bǔ)充:(1)已知點(diǎn)A到x軸、y軸的距離均為4,求A點(diǎn)坐標(biāo);(2)已知x軸上一點(diǎn)A(3,0),B(3,b),且AB=5,求b的值。
四.知識(shí)梳理談?wù)動(dòng)靡辉畏匠探鉀Q例1實(shí)際問(wèn)題的方法。五、目標(biāo)檢測(cè)設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個(gè)全等的小長(zhǎng)方形拼成,則每個(gè)小長(zhǎng)方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長(zhǎng)40米、寬20米的長(zhǎng)方形空地上計(jì)劃新建一塊長(zhǎng)9米、寬7米的長(zhǎng)方形花圃.(1)若請(qǐng)你在這塊空地上設(shè)計(jì)一個(gè)長(zhǎng)方形花圃,使它的面積比學(xué)校計(jì)劃新建的長(zhǎng)方形花圃的面積多1平方米,請(qǐng)你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長(zhǎng)方形花圃周長(zhǎng)不變的情況下,長(zhǎng)方形花圃的面積能否增加2平方米?如果能,請(qǐng)求出長(zhǎng)方形花圃的長(zhǎng)和寬;如果不能,請(qǐng)說(shuō)明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡(jiǎn)單的圖形面積問(wèn)題.
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理(1)兩組對(duì)邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對(duì)邊平行且相等的四邊形是平行四邊形.在整個(gè)教學(xué)過(guò)程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點(diǎn)撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來(lái)更加得心應(yīng)手.在證明命題的過(guò)程中,學(xué)生自然將判定方法進(jìn)行對(duì)比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開(kāi)平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書(shū)設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開(kāi)平方法:形如(x+m)2=n(n≥0)用直接開(kāi)平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開(kāi)平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開(kāi)平方法求出它的解.