(一)教材的地位和作用《海陸分布》主要介紹世界的海洋與陸地的概況,是學(xué)生在學(xué)習(xí)了《認識地球》等章節(jié)的基礎(chǔ)上,初步認識世界海陸的分布,是對前面所學(xué)習(xí)內(nèi)容的拓展和延伸;同時學(xué)好本節(jié)有助于學(xué)生學(xué)習(xí)八年級上冊的氣候、居民及下冊的世界分區(qū)地理。所以這一節(jié)的內(nèi)容顯得十分重要。
(1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個為正,則另一個就用負表示.理解表中的正負號表示的含義,根據(jù)條件計算出每天的水位即可求解;(2)只要觀察星期日的水位是正負即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結(jié):解此題的關(guān)鍵是分析題意列出算式,用的數(shù)學(xué)思想是轉(zhuǎn)化思想,即把實際問題轉(zhuǎn)化成數(shù)學(xué)問題.探究點二:有理數(shù)的加減混合運算在生活中的其他應(yīng)用
商業(yè)活動、人口遷徙、教育活動是文化傳播的主要途徑。隨著科學(xué)技術(shù)的不斷進步,文化傳播的手段也越來越多樣,越來越先進?,F(xiàn)代文化傳播已經(jīng)不僅限于這些,傳播的媒介越來越多。經(jīng)歷了口語、文字、印刷、電子和網(wǎng)絡(luò)等發(fā)展階段。二、大眾傳媒:現(xiàn)代文化傳播的手段1、 傳媒:傳播的媒介2、 發(fā)展:口語――文字――印刷――電子――網(wǎng)絡(luò)3、 現(xiàn)代傳媒包括:報刊、廣播、電視、網(wǎng)絡(luò)、雜志、書籍、手機、電子讀物等各種現(xiàn)代傳媒的作用各具特色,各有優(yōu)點。(學(xué)生討論并暢談各自的優(yōu)缺點)歸納:新的傳媒的出現(xiàn),并不意味著舊傳媒的消失,各種傳媒都在文化傳播中發(fā)揮著重要的作用。傳媒的真正開始面向大眾傳遞信息,是以印刷媒體的推廣為標(biāo)志的。如今,依托電子技術(shù)、微電子技術(shù)、光纖通信技術(shù)、網(wǎng)絡(luò)技術(shù)、多媒體技術(shù)等現(xiàn)代信息技術(shù),大眾傳媒能夠最大程度地穿越時空局限,匯集來自世界各地的信息,日益顯示出文化傳遞、溝通、共享的強大功能,已經(jīng)成為文化傳播的主要手段。
(一)、生活中的文化傳播◇課堂探究:(1)旅游歸來,介紹異國他鄉(xiāng)的風(fēng)俗人情、奇聞趣事;闔家團聚,高談闊論各自的所見所聞;獨居一室,打開收音機收聽節(jié)目……這些現(xiàn)象具有哪些共同特點?生活中還有哪些現(xiàn)象屬于文化傳播?(2)你能歸納出文化傳播主要有哪幾種方式嗎?◇探究提示:(1)這些現(xiàn)象都屬于文化傳播,通過這些活動傳遞知識、信息、觀念、情感和信仰等。生活中朋友聚會、參加娛樂活動、在家上網(wǎng)看電視等,都屬于文化傳播。(2)文化傳播主要方式有:商業(yè)活動、人口遷徙、教育、文化娛樂活動等。1.文化傳播的含義文化交流的過程,就是文化傳播的過程。那么何為文化傳播?人們通過一定的方式傳遞知識、信息、觀念、情感和信仰,以及與此相關(guān)的所有社會交往活動,都可視為文化傳播。
◇小辭典:綠色閱讀隨著知識經(jīng)濟時代的到來,全球化信息浪潮正鋪天蓋地席卷而來。尤其足隨著我國加入世貿(mào)組織由夢想變?yōu)楝F(xiàn)實,同國外進行頻繁而廣泛的經(jīng)濟文化交流,在所難免。在大量文化信息面前,就像物質(zhì)生活中倡導(dǎo)綠色食品一樣,對于精神食糧,也應(yīng)該倡導(dǎo)綠色閱讀。綠色閱讀,是一種無污染的有利于人健康文明生活的閱讀。文化就像大自然那種綠色帶給我們永久愉悅一樣,它是高科技競爭中源源不斷地給我們充電的高效營養(yǎng)庫,是一個沙漠中穿行人身心交瘁時望到的一片綠洲,是一個人葆有的、沒有受到任何污染的、永遠都清如許的“半畝方塘”?!笳n堂練習(xí):在我國,必須大力倡導(dǎo)“愛國守法、明禮誠信、團結(jié)友善、勤儉自強、敬業(yè)奉獻,的基本道德規(guī)范。這些基本道德規(guī)范()①是我國社會主義文化建設(shè)的重要內(nèi)容②是我國社會主義社會的重要特征③是我國社會主義道德的重要體現(xiàn)④是社會主義經(jīng)濟建設(shè)的唯一精神動力
三、解題和介紹創(chuàng)作背景。"裝在套子里的人"是指生活和思想上都有某種框框,不敢越雷池一步的人,小說中的主人公就是這樣一個人物,他是沙皇專制主義的產(chǎn)物。現(xiàn)在,別里科夫已成為頑固守舊,害怕變革,阻礙社會發(fā)展的人的代名詞。我們學(xué)習(xí)這篇課文,必須把握創(chuàng)作的時代背景:19世紀(jì)末期的俄國正是農(nóng)奴制度崩潰、資本主義迅速發(fā)展、沙皇專制極端反動和無產(chǎn)階級革命逐漸興起的時期。沙皇政府面臨著日益高漲的革命形勢,極力加強反動統(tǒng)治,沙皇政府的忠實衛(wèi)道士,也極力維護沙皇的反動統(tǒng)治,仇視和反對一切社會變革。作者寫這篇小說就是為了揭露和諷刺這種人丑惡的本質(zhì)。四、結(jié)構(gòu)分析明確:故事的主要情節(jié)是別里科夫的戀愛以及最后失敗,按照情節(jié)的發(fā)展可以把課文分成三部分:(一)介紹別里科夫的外表、生活習(xí)性和思想性格(第1-4段)。(二)別里科夫與華連卡戀愛以及最后失?。ǖ?段至倒數(shù)第3段)。(三)埋葬別里科夫,但生活中還有許多"別里科夫"(最后兩段)。
二、程朱理學(xué):1、宋代“理學(xué)”的產(chǎn)生:(1)含義:所謂“理學(xué)”,就是用“理學(xué)”一詞來指明當(dāng)時兩宋時期所呈現(xiàn)出來的儒學(xué)。廣義的理學(xué),泛指以討論天道問題為中心的整個哲學(xué)思潮,包括各種不同的學(xué)派;狹義的理學(xué),專指程顥、程頤、朱熹為代表的,以“理”為最高范疇的學(xué)說,稱為“程朱理學(xué)”。理學(xué)是北宋政治、社會、經(jīng)濟發(fā)展的理論表現(xiàn),是中國古代哲學(xué)長期發(fā)展的結(jié)果,是批判佛、道學(xué)說的產(chǎn)物。他們把“理”或“天理”視作哲學(xué)的最高范疇,認為理無所不在,不生不滅,不僅是世界的本原,也是社會生活的最高準(zhǔn)則。在窮理方法上,程顥“主靜”,強調(diào)“正心誠意”;程頤“主敬”,強調(diào)“格物致知”。在人性論上,二程主張“去人欲,存天理”,并深入闡釋這一觀點使之更加系統(tǒng)化。二程學(xué)說的出現(xiàn),標(biāo)志著宋代“理學(xué)”思想體系的正式形成?!竞献魈骄俊克未袄韺W(xué)”興起的社會條件:
一、教材內(nèi)容經(jīng)全國中小學(xué)教材審定委員會2004年初審查通過,人教育出版社出版的普通高中課程標(biāo)準(zhǔn)實驗教科書《物理必修①》,第三章第5節(jié)內(nèi)容“力的分解”。二、教學(xué)目標(biāo)1.知識與技能(1)理解分力的概念,理解力的分解是力的合成的逆運算,遵循平行四邊形定則。(2)初步掌握一般情況下力的分解要根據(jù)實際需要來確定分力的方向。(3)會用作圖法和直角三角形的知識求分力。(4)能區(qū)別矢量和標(biāo)量,知道三角形定則,了解三角形定則與平行四邊形定則的實質(zhì)是一樣的。2.過程與方法(1)進一步領(lǐng)會“等效替代”的思想方法。(2)通過探究嘗試發(fā)現(xiàn)問題、探索問題、解決問題能力。(3)掌握應(yīng)用數(shù)學(xué)知識解決物理問題的能力。3.情感態(tài)度與價值觀(1)通過猜測與探究享受成功的快樂。(2)感受物理就在身邊,有將物理知識應(yīng)用于生活和生產(chǎn)實驗的意識。三、教學(xué)重點、難點在具體問題中如何根據(jù)力的實際作用效果和平行四邊形定則進行力的分解。
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學(xué)生的識圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對同學(xué)的回答,教師給予點評,對回答問題暫時有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當(dāng)然也可以設(shè)法得出各自對應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進一步求得我們所需要的結(jié)果.
方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進,逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標(biāo),即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標(biāo).三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
學(xué)習(xí)目標(biāo)1.掌握兩個一次函數(shù)圖像的應(yīng)用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學(xué)完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
解:(1)設(shè)第一次購買的單價為x元,則第二次的單價為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗,x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進價為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應(yīng)該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動的流程.三、板書設(shè)計列分式方程解應(yīng)用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準(zhǔn)等量關(guān)系,列出方程;第四步,解方程,并驗根,還要看方程的解是否符合題意;最后作答.
因為反比例函數(shù)的圖象經(jīng)過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當(dāng)S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強、壓力與受力面積之間的關(guān)系p= ,當(dāng)壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關(guān)系,從而進一步建立反比例函數(shù)模型.三、板書設(shè)計反比例函數(shù)的應(yīng)用實際問題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識的綜合經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,增強應(yīng)用意識.通過反比例函數(shù)在其他學(xué)科中的運用,體驗學(xué)科整合思想.
補充題:為了預(yù)防“非典”,某學(xué)校對教室采用藥熏消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時學(xué)生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學(xué)生才能回到教室;(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.
有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當(dāng)x=1時,購買資金為12×1+10×9=102(萬元);當(dāng)x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺.方法總結(jié):此題將現(xiàn)實生活中的事件與數(shù)學(xué)思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應(yīng)把幾種情況進行比較.三、板書設(shè)計應(yīng)用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與,講練結(jié)合,引導(dǎo)學(xué)生找不等關(guān)系列不等式.在教學(xué)過程中,可通過類比列一元一次方程解決實際問題的方法來學(xué)習(xí),讓學(xué)生認識到列方程與列不等式的區(qū)別與聯(lián)系.
教學(xué)目標(biāo)(一)教學(xué)知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計算器進行有關(guān)三角函數(shù)的計算,并能對結(jié)果的意義進行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動,提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和解決問題的能力.教學(xué)難點根據(jù)題意,了解有關(guān)術(shù)語,準(zhǔn)確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設(shè)備2臺,乙種設(shè)備10臺;②購買甲種設(shè)備3臺,乙種設(shè)備9臺;③購買甲種設(shè)備4臺,乙種設(shè)備8臺.方法總結(jié):列不等式組解應(yīng)用題時,一般只設(shè)一個未知數(shù),找出兩個或兩個以上的不等關(guān)系,相應(yīng)地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計1.一元一次不等式組的解法2.一元一次不等式組的實際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達題意的不等關(guān)系,再根據(jù)各個不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時要讓學(xué)生養(yǎng)成檢驗的習(xí)慣,感受運用數(shù)學(xué)知識解決問題的過程,提高實際操作能力.
歌?。╫pera)是將音樂(聲樂與器樂)、戲?。▌”九c表演)、文學(xué)(詩歌)、舞蹈(民間舞與芭蕾)、舞臺美術(shù)等融為一體的綜合性藝術(shù),通常由詠嘆調(diào)、宣敘調(diào)、重唱、合唱、序曲、間奏曲、舞蹈場面等組成(有時也用說白和朗誦)。早在古希臘的戲劇中,就有合唱隊的伴唱,有些朗誦甚至也以歌唱的形式出現(xiàn);中世紀(jì)以宗教故事為題材,宣揚宗教觀點的神跡劇等亦香火繚繞,持續(xù)不斷。但真正稱得上“音樂的戲劇”的近代西洋歌劇,卻是16世紀(jì)末、17世紀(jì)初,隨著文藝復(fù)興時期音樂文化的世俗化而應(yīng)運產(chǎn)生的。歌劇被視為西方經(jīng)典音樂傳統(tǒng)的一部分,因此和經(jīng)典音樂一樣,流行程度不及當(dāng)代流行音樂,而近代的音樂劇被視為歌劇的現(xiàn)代版本。