等式性質與不等式性質是高中數學的主要內容之一,在高中數學中占有重要地位,它是刻畫現實世界中量與量之間關系的有效數學模型,在現實生活中有著廣泛的應,有著重要的實際意義.同時等式性質與不等式性質也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質與不等式性質以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質。數學學科素養(yǎng)1.數學抽象:不等式的基本性質;2.邏輯推理:不等式的證明;3.數學運算:比較多項式的大小及重要不等式的應用;4.數據分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉化為加法,將除法轉化為乘法);5.數學建模:運用類比的思想有等式的基本性質猜測不等式的基本性質。
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數f (x)在這個區(qū)間上單調遞減. ( )(2)函數在某一點的導數越大,函數在該點處的切線越“陡峭”. ( )(3)函數在某個區(qū)間上變化越快,函數在這個區(qū)間上導數的絕對值越大.( )(4)判斷函數單調性時,在區(qū)間內的個別點f ′(x)=0,不影響函數在此區(qū)間的單調性.( )[解析] (1)√ 函數f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數f (x)在這個區(qū)間上單調遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關,故錯誤.(3)√ 函數在某個區(qū)間上變化的快慢,和函數導數的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數f (x)在區(qū)間內單調遞增(減),故f ′(x)=0不影響函數單調性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數判斷下列函數的單調性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數在R上單調遞增,如圖(1)所示
【教學目標】知識目標:⑴ 理解任意角的三角函數的定義及定義域;⑵ 理解三角函數在各象限的正負號;⑶掌握界限角的三角函數值.能力目標:⑴會利用定義求任意角的三角函數值;⑵會判斷任意角三角函數的正負號;⑶培養(yǎng)學生的觀察能力.【教學重點】⑴ 任意角的三角函數的概念;⑵ 三角函數在各象限的符號;⑶特殊角的三角函數值.【教學難點】任意角的三角函數值符號的確定.【教學設計】(1)在知識回顧中推廣得到新知識;(2)數形結合探求三角函數的定義域;(3)利用定義認識各象限角三角函數的正負號;(4)數形結合認識界限角的三角函數值;(5)問題引領,師生互動.在問題的思考和交流中,提升能力.
三個“二次”即一元二次函數、一元二次方程、一元二次不等式是高中數學的重要內容,具有豐富的內涵和密切的聯系,同時也是研究包含二次曲線在內的許多內容的工具 高考試題中近一半的試題與這三個“二次”問題有關 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯系,掌握函數、方程及不等式的思想和方法。課程目標1. 通過探索,使學生理解二次函數與一元二次方程,一元二次不等式之間的聯系。2. 使學生能夠運用二次函數及其圖像,性質解決實際問題. 3. 滲透數形結合思想,進一步培養(yǎng)學生綜合解題能力。數學學科素養(yǎng)1.數學抽象:一元二次函數與一元二次方程,一元二次不等式之間的聯系;2.邏輯推理:一元二次不等式恒成立問題;3.數學運算:解一元二次不等式;4.數據分析:一元二次不等式解決實際問題;5.數學建模:運用數形結合的思想,逐步滲透一元二次函數與一元二次方程,一元二次不等式之間的聯系。
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。
學生已經學習了指數運算性質,有了這些知識作儲備,教科書通過利用指數運算性質,推導對數的運算性質,再學習利用對數的運算性質化簡求值。課程目標1、通過具體實例引入,推導對數的運算性質;2、熟練掌握對數的運算性質,學會化簡,計算.數學學科素養(yǎng)1.數學抽象:對數的運算性質;2.邏輯推理:換底公式的推導;3.數學運算:對數運算性質的應用;4.數學建模:在熟悉的實際情景中,模仿學過的數學建模過程解決問題.重點:對數的運算性質,換底公式,對數恒等式及其應用;難點:正確使用對數的運算性質和換底公式.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入回顧指數性質:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數有哪些性質?如 要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
對數與指數是相通的,本節(jié)在已經學習指數的基礎上通過實例總結歸納對數的概念,通過對數的性質和恒等式解決一些與對數有關的問題.課程目標1、理解對數的概念以及對數的基本性質;2、掌握對數式與指數式的相互轉化;數學學科素養(yǎng)1.數學抽象:對數的概念;2.邏輯推理:推導對數性質;3.數學運算:用對數的基本性質與對數恒等式求值;4.數學建模:通過與指數式的比較,引出對數定義與性質.重點:對數式與指數式的互化以及對數性質;難點:推導對數性質.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入已知中國的人口數y和年頭x滿足關系 中,若知年頭數則能算出相應的人口總數。反之,如果問“哪一年的人口數可達到18億,20億,30億......”,該如何解決?要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
例7 用描述法表示拋物線y=x2+1上的點構成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數.變式2.[變條件,變設問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數.解題技巧(認識集合含義的2個步驟)一看代表元素,是數集還是點集,二看元素滿足什么條件即有什么公共特性。
《奇偶性》內容選自人教版A版第一冊第三章第三節(jié)第二課時;函數奇偶性是研究函數的一個重要策略,因此奇偶性成為函數的重要性質之一,它的研究也為今后指對函數、冪函數、三角函數的性質等后續(xù)內容的深入起著鋪墊的作用.課程目標1、理解函數的奇偶性及其幾何意義;2、學會運用函數圖象理解和研究函數的性質;3、學會判斷函數的奇偶性.數學學科素養(yǎng)1.數學抽象:用數學語言表示函數奇偶性;2.邏輯推理:證明函數奇偶性;3.數學運算:運用函數奇偶性求參數;4.數據分析:利用圖像求奇偶函數;5.數學建模:在具體問題情境中,運用數形結合思想,利用奇偶性解決實際問題。重點:函數奇偶性概念的形成和函數奇偶性的判斷;難點:函數奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數. *創(chuàng)設情境 興趣導入 與正弦函數圖像的做法類似,可以用“五點法”作出正弦型函數的圖像.正弦型函數的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數在一個周期內的簡圖. 分析 函數與函數的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯結各點,得到函數在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.3.2節(jié)《對數的運算》。其核心是弄清楚對數的定義,掌握對數的運算性質,理解它的關鍵就是通過實例使學生認識對數式與指數式的關系,分析得出對數的概念及對數式與指數式的 互化,通過實例推導對數的運算性質。由于它還與后續(xù)很多內容,比如對數函數及其性質,這也是高考必考內容之一,所以在本學科有著很重要的地位。解決重點的關鍵是抓住對數的概念、并讓學生掌握對數式與指數式的互化;通過實例推導對數的運算性質,讓學生準確地運用對數運算性質進行運算,學會運用換底公式。培養(yǎng)學生數學運算、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、理解對數的概念,能進行指數式與對數式的互化;2、了解常用對數與自然對數的意義,理解對數恒等式并能運用于有關對數計算。
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題,經常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40
《基本不等式》在人教A版高中數學第一冊第二章第2節(jié),本節(jié)課的內容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內容也是之后基本不等式應用的必要基礎。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數學的嚴謹性。數學學科素養(yǎng)1.數學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數學運算:利用基本不等式求最值;4.數據分析:利用基本不等式解決實際問題;5.數學建模:利用函數的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.
學生在初中學習了 ~ ,但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.因此為了準確描述這些現象,本節(jié)課主要就旋轉度數和旋轉方向對角的概念進行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數學學科素養(yǎng)1.數學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉一周回到起始位置,在這個過程中可以得到 ~ 范圍內的角.但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.
本節(jié)主要內容是三角函數的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現對稱變換思想在數學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數學思想的探究過程,培養(yǎng)學生用聯系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數化為銳角的三角函數,并解決有關三角函數求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
指數函數與冪函數是相通的,本節(jié)在已經學習冪函數的基礎上通過實例總結歸納指數函數的概念,通過函數的三個特征解決一些與函數概念有關的問題.課程目標1、通過實際問題了解指數函數的實際背景;2、理解指數函數的概念和意義.數學學科素養(yǎng)1.數學抽象:指數函數的概念;2.邏輯推理:用待定系數法求函數解析式及解析值;3.數學運算:利用指數函數的概念求參數;4.數學建模:通過由抽象到具體,由具體到一般的思想總結指數函數概念.重點:理解指數函數的概念和意義;難點:理解指數函數的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入在本章的開頭,問題(1)中時間 與GDP值中的 ,請問這兩個函數有什么共同特征.要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人 教A版)第五章《三角函數》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數學抽象:角的概念;2.邏輯推理:象限角的表示;3.數學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數學思想方法;
一、復習回顧,溫故知新1. 任意角三角函數的定義【答案】設角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導公式一 ,其中, 。終邊相同的角的同一三角函數值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數值有什么關系?【答案】相等(2).角 -α與α的終邊 有何位置關系?【答案】終邊關于x軸對稱(3).角 與α的終邊 有何位置關系?【答案】終邊關于y軸對稱(4).角 與α的終邊 有何位置關系?【答案】終邊關于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關于原點對稱點P1(-x, -y)點P(x, y)關于x軸對稱點P2(x, -y) 點P(x, y)關于y軸對稱點P3(-x, y)
本節(jié)內容是學生學習了任意角和弧度制,任意角的三角函數后,安排的一節(jié)繼續(xù)深入學習內容,是求三角函數值、化簡三角函數式、證明三角恒等式的基本工具,是整個三角函數知識的基礎,在教材中起承上啟下的作用。同時,它體現的數學思想與方法在整個中學數學學習中起重要作用。課程目標1.理解并掌握同角三角函數基本關系式的推導及應用.2.會利用同角三角函數的基本關系式進行化簡、求值與恒等式證明.數學學科素養(yǎng)1.數學抽象:理解同角三角函數基本關系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關系;3.數學運算:利用同角三角函數的基本關系式進行化簡、求值與恒等式證明重點:理解并掌握同角三角函數基本關系式的推導及應用; 難點:會利用同角三角函數的基本關系式進行化簡、求值與恒等式證明.
本節(jié)課是在學習了三角函數圖象和性質的前提下來學習三角函數模型的簡單應用,進一步突出函數來源于生活應用于生活的思想,讓學生體驗一些具有周期性變化規(guī)律的實際問題的數學“建?!彼枷?從而培養(yǎng)學生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數是描述周期變化現象的重要函數模型,并會用三角函數模型解決一些簡單的實際問題.2.實際問題抽象為三角函數模型. 數學學科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數模型問題;2.數據分析:分析、整理、利用信息,從實際問題中抽取基本的數學關系來建立數學模型; 3.數學運算:實際問題求解; 4.數學建模:體驗一些具有周期性變化規(guī)律的實際問題的數學建模思想,提高學生的建模、分析問題、數形結合、抽象概括等能力.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。