1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
方法三:一個同學(xué)先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學(xué)生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.
(2)如果對應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因為矩形的四個角均是直角,所以在有關(guān)矩形相似的問題中,只需看對應(yīng)邊是否成比例,若成比例,則相似,否則不相似.
(2)相似多邊形的對應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質(zhì).活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學(xué)生活動:學(xué)生通過例題運用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應(yīng)重點關(guān)注:(1)學(xué)生參與活動的熱情及語言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習(xí)題4.4
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當(dāng)客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
教學(xué)目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點:計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關(guān)鍵.
[教學(xué)目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學(xué)重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當(dāng)直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.
四、說教學(xué)過程(一)結(jié)合現(xiàn)實、自然導(dǎo)入隨著我國開放的深入發(fā)展,國外的科學(xué)、文化、技術(shù)以及資產(chǎn)階級的腐朽思想,生活作風(fēng)等等也隨之大量涌來,我們應(yīng)采取怎樣的態(tài)度和方法才是正確的呢?魯迅先生在30年代就繼承文化遺產(chǎn)問題曾寫過一篇雜文,我們可以從中獲得那些啟示呢?(二)整體感知、疏瀹文意1.請同學(xué)介紹“我所知道的魯迅”,教師補充寫作背景。教師有針對性的進行預(yù)習(xí)檢查,能促使學(xué)生養(yǎng)成課前預(yù)習(xí)的習(xí)慣。2.理清文章的思路,分析文章的整體結(jié)構(gòu)教師范讀課文,針對較難的字音進行正讀。學(xué)生快速瀏覽課文,把握全文框架,小組討論后分出層次。(讓學(xué)生通過自主合作探究來概括文意可以讓同學(xué)們參與到教學(xué)活動中,鍛煉學(xué)生實際動手能力)
(三)說目標鑒于以上學(xué)情分析,結(jié)合單元學(xué)習(xí)任務(wù)群——思辨性閱讀與表達的定位,確定本課教學(xué)目標為通過設(shè)置任務(wù)情境,帶領(lǐng)學(xué)生在活動中認識表達的有針對性、論述的層次邏輯性以及感受文章蘊含的批判力量。其中以表達的有針對性為教學(xué)重點,以論述的層次邏輯性為難點。(四)說理念根據(jù)課標和教材特點,結(jié)合學(xué)情,授課將依托“學(xué)為中學(xué)理論”“建構(gòu)主義學(xué)習(xí)理論”和“最近發(fā)展區(qū)理論”等,積極開展閱讀與鑒賞、表達與交流、梳理與探究等語文實踐活動提升學(xué)生語文核心素養(yǎng)。三、教學(xué)實施(一)設(shè)定學(xué)習(xí)情境為引導(dǎo)廣大學(xué)生合理對待外來文化,學(xué)校辯論社擬設(shè)定辯題——如何正確對待外來文化展開辯論。有同學(xué)說堅決抵制外來文化(正方),也有同學(xué)說要積極吸收(反方)……那么如果你是其中一位辯手,你將在《拿來主義》中如何擷取素材呢?
學(xué)生展示:魯迅在《拿來主義》討論“送去主義”時使用的不是徐、劉二人歐洲巡展的事實,而是《大晚報》評價二人歐洲巡展為“發(fā)揚國光”這一事實,故用了“叫作”,且是加引號的“發(fā)揚國光”;用“送”字表明自己針對的對象不是梅蘭芳本人及其藝術(shù),而是“送梅蘭芳博士到蘇聯(lián)去”的人及其行為,即強行將中國戲劇與象征主義相聯(lián)系的牽強附會的行徑??梢?,魯迅針對的是當(dāng)時國民政府一味送去的行徑和主流媒體宣揚為“發(fā)揚國光”的輿論導(dǎo)向。設(shè)計意圖:有的放矢,針砭時弊是雜文的突出特征。耙子指向哪兒、時弊是什么是必須思考的問題。有學(xué)生誤以為魯迅在批判徐悲鴻、劉海粟、梅蘭芳等人,甚至調(diào)侃說魯迅“懟人狂魔”“老陰陽師”。通過此活動,細讀文本,還原歷史,抓住“叫作”與“送”的主體,找準魯迅批判的對象和針對的現(xiàn)象。同時,引導(dǎo)學(xué)生用不可隨意使用所謂網(wǎng)絡(luò)“梗文化”來消解名人、偉人等事跡的嚴肅性,不可以娛樂心態(tài)品讀經(jīng)典作品。
(一)接受客觀現(xiàn)實,調(diào)整就業(yè)期望值 從文章的第一部分我們可以看到,其實中高等級的職位需求是較少的,而較低等級的職位需求是巨大的,但是,許多大學(xué)生對“市場”殘酷的一面認識不足,對就業(yè)市場的客觀實際了解不夠,只是停留在自己對“美好前途的幻想”之中,這就導(dǎo)致了就業(yè)市場上許多大學(xué)生找不到工作的同時,仍然有大量的職位空缺的現(xiàn)狀。我們說,與其不停地成天怨天尤人,浪費了時間、影響了自己心情,還不如勇敢地承認和接受當(dāng)前所面臨的現(xiàn)實,徹底打破以往的美好想象,腳踏實地地尋求解決問題的好辦法。這就要求我們調(diào)整就業(yè)的期望值。
(一)接受客觀現(xiàn)實,調(diào)整就業(yè)期望值 從文章的第一部分我們可以看到,其實中高等級的職位需求是較少的,而較低等級的職位需求是巨大的,但是,許多大學(xué)生對“市場”殘酷的一面認識不足,對就業(yè)市場的客觀實際了解不夠,只是停留在自己對“美好前途的幻想”之中,這就導(dǎo)致了就業(yè)市場上許多大學(xué)生找不到工作的同時,仍然有大量的職位空缺的現(xiàn)狀。我們說,與其不停地成天怨天尤人,浪費了時間、影響了自己心情,還不如勇敢地承認和接受當(dāng)前所面臨的現(xiàn)實,徹底打破以往的美好想象,腳踏實地地尋求解決問題的好辦法。這就要求我們調(diào)整就業(yè)的期望值。
①闡發(fā)話題式:就是用簡練的語言對所給話題材料加以概括和濃縮,并找到一個最佳切入點加以深層次闡述。吉林一考生的滿分作文《漫談“感情”“認知”》的題記是:“同是對‘修墻’‘防盜’的預(yù)見,卻產(chǎn)生‘聰明’或‘被懷疑’的結(jié)果。‘感情’竟能如此地左右著‘認知’,心的小舟啊,在文化的河流中求索。”這個題記通過對材料的簡單解釋,將“感情”與“認知”二者的關(guān)系詮釋得非常明白,也點明了作者的態(tài)度和議論的中心。②詮釋題目式:所擬題目一般都具有深刻性特點,運用題記形式對題目進行巧妙而又全面的詮釋。云南一考生的滿分作文《與你同行》的題記是:“他們一路同行,一個汲著水,一個負著火,形影相隨。在他們攜手共進時,就產(chǎn)生了智慧。”這個題記形象而深刻地對“與你同行”這個題目進行了解釋,言簡意賅,表明了考生對感情和理智關(guān)系的認識。
今天,市委市政府召開幾項重點工作推進會議,是在“十四五”開局起步之年,在一季度經(jīng)濟發(fā)展來勢較好,乘勢而上的關(guān)鍵時刻召開的一次重要會議,目的是要統(tǒng)一思想,凝聚共識,堅持發(fā)展第一要務(wù),堅定不移推進高質(zhì)量發(fā)展。一要凝心聚力抓發(fā)展??梢哉f,今年上半年的工作決定了全年的發(fā)展走勢,今年的發(fā)展決定了未來幾年的發(fā)展走勢,因此,抓好當(dāng)前的重點工作十分重要、也十分緊迫。全市各級各部門要增強抓發(fā)展的緊迫感和責(zé)任感,集中精力、心無旁騖、一心一意抓發(fā)展,用發(fā)展的辦法推動“三高四新”戰(zhàn)略落實落地,更好更快實現(xiàn)我市“十四五”戰(zhàn)略定位和發(fā)展目標。二要突出重點抓發(fā)展。
今天,州委州政府召開幾項重點工作推進會議,是在“十四五”開局起步之年,在一季度經(jīng)濟發(fā)展來勢較好,乘勢而上的關(guān)鍵時刻召開的一次重要會議,目的是要統(tǒng)一思想,凝聚共識,堅持發(fā)展第一要務(wù),堅定不移推進高質(zhì)量發(fā)展。一要凝心聚力抓發(fā)展??梢哉f,今年上半年的工作決定了全年的發(fā)展走勢,今年的發(fā)展決定了未來幾年的發(fā)展走勢,因此,抓好當(dāng)前的重點筆掃千軍整理工作十分重要、也十分緊迫。