預(yù)設(shè) 簡·愛是一個堅強樸實、剛?cè)岵?jì)、獨立自主、積極進(jìn)取的女性。她出身卑微,相貌平凡,但并不以此自卑。她蔑視權(quán)貴的驕橫,嘲笑他們的愚笨,顯示出自立自強的人格和美好的理想追求。她有頑強的生命力,從不向命運低頭,最后有了自己所向往的美好生活。簡·愛對自己的思想和人格有著理性的認(rèn)識,對自己的幸福和情感有著堅定的追求。在她身上,體現(xiàn)了新女性的特點:自尊、自重、自立、自強。六、探究小說的主題思想【設(shè)計意圖】在理解小說內(nèi)容和人物形象的基礎(chǔ)上,進(jìn)一步探究小說的主題思想。小組討論,《簡·愛》的主題思想是什么?請簡要分析。預(yù)設(shè) 《簡·愛》闡釋了這樣一個主題:人的價值=尊嚴(yán)+愛。小說中簡·愛的人生追求有兩個基本“旋律”:富于激情、幻想和反抗精神;追求超越個人幸福的至高境界。這部小說通過敘述一個孤女坎坷不幸的人生經(jīng)歷,成功塑造了一個不安于現(xiàn)狀、不甘于受辱、敢于抗?fàn)幍呐孕蜗?,反映了一個小寫的人要成為一個大寫的人的渴望。
1.題目具有開放性,可以實寫,也可以虛寫。展開聯(lián)想和想象,將自己想到的全列出來,然后再從中確定寫作重點。2.從題目看,可以靈活選擇文體。比如,可以以寫景或抒情為主,也可以進(jìn)行議論,或者虛構(gòu)一個故事等,要力求有創(chuàng)意。3.注意表達(dá)上的創(chuàng)新,豐富的詞語、恰當(dāng)?shù)男揶o等,都可以為文章增色。2.寫作指導(dǎo)。(1)審題立意。本題具有開放性,有實虛兩重意義。展開聯(lián)想和想象,可以寫實,也可以寫它的象征意義,還可以實虛結(jié)合?!按禾斓纳省奔瓤梢灾脯F(xiàn)實中的春天的各種色彩,也可以指象征意義中的“春天”帶著“色彩”(以表達(dá)某種心情)。如自然的春天、社會的春天、心靈的春天等等。(2)文體選擇與表達(dá)。在文體方面,可以寫成寫景或抒情的散文,也可以寫議論文,或者寫成表達(dá)“春天的色彩”這一主題的記敘文。在表達(dá)上應(yīng)有創(chuàng)新,可以用豐富的詞匯、變換的句式、新穎的修辭為文章增色。尤其在作文形式上要有所創(chuàng)新。
詩歌創(chuàng)作個性十足,難以用統(tǒng)一的規(guī)律去分析,然而發(fā)掘一些欣賞詩歌的一般性的思路和角度,可以讓閱讀詩歌有章可循,減少學(xué)生讀詩時的畏難情緒。在第1課時中,我以朗讀為貫穿課堂的抓手,讓學(xué)生通過思考“怎么讀”,自覺地去發(fā)現(xiàn)并分析詩歌中的意象,理解詩歌大意,讓學(xué)生對詩歌有初步的理解和體會。第2課時在整體把握詩歌的基礎(chǔ)上,具體去分析詩歌中富有表現(xiàn)力的語言,訓(xùn)練學(xué)生深入思考的能力,引導(dǎo)學(xué)生梳理詩歌的情感脈絡(luò),體會詩中作者的情感變化,理解詩人想要表達(dá)的真摯情感,并通過拓展閱讀讓學(xué)生嘗試自己解讀詩歌,幫助學(xué)生鞏固所學(xué)的閱讀詩歌的方法。兩節(jié)課的側(cè)重點不同,但都圍繞這首詩的特點和整體教學(xué)思路進(jìn)行規(guī)劃,做到“一課一得”。寫作背景舒婷初中畢業(yè)后下鄉(xiāng)插隊,后又當(dāng)過工人。在國家蒙難、人民遭殃的非常歲月,備嘗艱辛的舒婷,內(nèi)心的迷惘、痛苦可想而知。1978年12月,中國迎來了具有重大歷史意義的十一屆三中全會,開啟了改革開放的歷史新時期。1979年4月,詩人面對祖國擺脫苦難、正欲奮飛的情景,以自己獨有的抒情方式寫下了此詩。
教材分析:《楓樹上的喜鵲》是一篇童話故事,這篇課文敘述的線條簡潔、明快,情節(jié)簡單、干凈,語調(diào)較為活潑,符合兒童的心理特點和閱讀接受能力。但是這篇童話又與眾不同的地方在于,一般的童話大都采用第三人稱敘述,講述者是置身事外的。而這篇童話采用的是第三人稱和第一人稱穿插敘述的方式,把一個帶著童真、童趣的眼睛去看待周圍事物的孩童展現(xiàn)在我們的面前。這個童話故事告訴我們:童話就在我們身邊,人人都可以創(chuàng)造童話?! W(xué)情分析:二年級的學(xué)生,已經(jīng)對童話故事有濃厚的興趣,好奇心強,但缺乏一定的鑒別能力。大多數(shù)學(xué)生活潑、好動、大膽且獨立,他們已經(jīng)掌握了識字的方法,喜歡讀書,但語言的表達(dá)能力、邏輯思維能力欠佳,有意注意的時間還比較短。
(1)指名讀。評議。用自己體會的感情比賽朗讀。(抓住“趴”、“四面八方”、“挖呀、挖呀”、“歡呼”;“終于”、“一……就”等詞語來朗讀體會小朋友心地純善?!拔覀儦g呼著勝利,歡呼著炸死了魔王,歡呼著救出了公主?!迸疟染鋵懗隽撕⒆觽儜?zhàn)勝邪惡、贏得勝利的無比興奮的心情。指導(dǎo)讀好。)(2)孩子們的故事是真的嗎?媽媽為什么會被我們當(dāng)作是公主?聽老師老師朗讀4、5自然段,學(xué)生思考。(我們太高興了,我們被當(dāng)時的情景感染了。)媽媽怎么會出現(xiàn)在身后?(結(jié)合第一自然段的“偷偷”來理解:“偷偷”說明我們怕大人知道批評我們貪玩,制止我們?nèi)ネ?。于是只好不告訴大人,私自去玩,還自以為大人不知道??墒聦嵣?,媽媽或許見我們玩得很高興有意思,并沒有責(zé)怪我們。只是見我們沒按時回家有點擔(dān)心我們,便找來了。引導(dǎo)學(xué)生充分說,來體會父母對孩子的愛。)
當(dāng)汽車行駛在鄉(xiāng)間小道時,作家馮驥才再也沒有了寫作的沖動。往日白磚青瓦的農(nóng)舍冒出了西洋式的尖頂和閃著異光的馬賽克,炊煙裊裊,小橋流水成了埋藏在心底的夢。馮先生開始四處奔波,大聲疾呼:救救我們的文化遺產(chǎn)!中國文化博大而寬廣。她無處不在——融于書本,徜徉于江南小道,盤旋在峭壁飛檐……我們被這種濃厚的文化信息包圍著,卻道貌岸然地做著劊子手。忘記歷史就是背叛。我們的文化遺產(chǎn)是歷史的見證。秦始皇的兵馬俑至今氣宇軒昂地挺立著,隋朝大運河的波瀾依舊拍打著千年的岸堤……孟江女的哭聲凄婉悲慟,纖夫的號子似乎仍在耳邊縈繞。沉淀了千年的沉浮、繁華、屈辱、悲憤,這些文化遺產(chǎn)燙帖了坎坷的心靈,將肅穆呈于世人。刀光劍影去了,長歌悲哭停止了,豪情廝殺消逝了……一切隨著大江東去,只有千年松柏和著輕風(fēng)耳語。
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導(dǎo)入愛護(hù)花草樹木是我們每個人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.
1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停弧⑶榫硨?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.
(1)請你用代數(shù)式表示水渠的橫斷面面積;(2)計算當(dāng)a=3,b=1時,水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計教學(xué)過程中,應(yīng)通過活動使學(xué)生感知代數(shù)式運算在判斷和推理上的意義,增強學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅實的基礎(chǔ).
方法總結(jié):對等式進(jìn)行變形,必須在等式的兩邊同時進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學(xué)活動,感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.
方法總結(jié):在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.
1.會用二次根式的四則運算法則進(jìn)行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標(biāo),即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標(biāo).三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進(jìn)一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過一點作一條直線或線段的平行線是我們常作的輔助線.
解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負(fù)半軸上,∴B點的坐標(biāo)為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個已知點的坐標(biāo),然后運用待定系數(shù)法將兩點的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達(dá)式某商店售貨時,在進(jìn)價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時的售價.
探究點二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應(yīng)是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設(shè)計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過的知識來推導(dǎo)出新的定理以及運用新的定理解決相關(guān)問題,進(jìn)一步熟悉和掌握證明的步驟、格式、方法、技巧.進(jìn)一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.
(4)從平均分看,兩隊的平均分相同,實力大體相當(dāng);從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設(shè)計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過小組合作,培養(yǎng)學(xué)生的合作意識;通過解決實際問題,讓學(xué)生體會數(shù)學(xué)與生活的密切聯(lián)系.