(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計(jì)算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計(jì)算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計(jì)1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時是在上一課時的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時要給學(xué)生足夠主動權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時提高學(xué)生的邏輯思維能力.
方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設(shè)計(jì)1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時,應(yīng)結(jié)合圖形,聯(lián)想我們已學(xué)過的定義、公理、定理等知識,尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學(xué)會分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.
【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個負(fù)數(shù)時,不等號的方向才改變.三、板書設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個負(fù)數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學(xué)時,鼓勵學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.
方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個少算的內(nèi)角的取值范圍.探究點(diǎn)二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運(yùn)用一個多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問題.
解:(1)設(shè)第一次購買的單價(jià)為x元,則第二次的單價(jià)為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗(yàn),x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進(jìn)價(jià)為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應(yīng)該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動的流程.三、板書設(shè)計(jì)列分式方程解應(yīng)用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準(zhǔn)等量關(guān)系,列出方程;第四步,解方程,并驗(yàn)根,還要看方程的解是否符合題意;最后作答.
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設(shè)計(jì)1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當(dāng)B≠0時,分式有意義;當(dāng)B=0時,分式無意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時,分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨(dú)立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學(xué)生解決,問題由易到難,層層深入,既復(fù)習(xí)了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應(yīng)注意循序性,先易后難、由簡到繁、層層遞進(jìn),臺階式的提問使問題解決水到渠成.
探究點(diǎn)二:列分式方程某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設(shè)原計(jì)劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計(jì)劃每天生產(chǎn)x個,則實(shí)際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個數(shù)+10個)÷實(shí)際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計(jì)劃每天生產(chǎn)x個,則實(shí)際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計(jì)1.分式方程的概念2.列分式方程本課時的教學(xué)以學(xué)生自主探究為主,通過參與學(xué)習(xí)的過程,讓學(xué)生感受知識的形成與應(yīng)用的價(jià)值,增強(qiáng)學(xué)習(xí)的自覺性,體驗(yàn)類比學(xué)習(xí)思想的重要性,然后結(jié)合生活實(shí)際,發(fā)現(xiàn)數(shù)學(xué)知識在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.
【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計(jì)1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗(yàn).2.分式方程的增根(1)解分式方程為什么會產(chǎn)生增根;(2)分式方程檢驗(yàn)的方法.
把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計(jì)算出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1?、?,2(1-x)≤5?、?,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書設(shè)計(jì)一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時,先解每一個不等式,再確定各個不等式組的解集的公共部分.
解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時,若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡便.三、板書設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個多項(xiàng)式的各項(xiàng)有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
證明:過點(diǎn)A作AF∥DE,交BC于點(diǎn)F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計(jì)1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點(diǎn)按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設(shè)計(jì)1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項(xiàng);(4)合并同類項(xiàng);(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時有所不同.如果這個系數(shù)是正數(shù),不等號的方向不變;如果這個系數(shù)是負(fù)數(shù),不等號的方向改變.這也是這節(jié)課學(xué)生容易出錯的地方.教學(xué)時要大膽放手,不要怕學(xué)生出錯,通過學(xué)生犯的錯誤引起學(xué)生注意,理解產(chǎn)生錯誤的原因,以便在以后的學(xué)習(xí)中避免出錯.
今天我說課的內(nèi)容是:小學(xué)二年級數(shù)學(xué)上冊第五單元“2—5的乘法口訣”的第5課時《回家路上》。本節(jié)課是在已有知識與經(jīng)驗(yàn)的基礎(chǔ)上,讓學(xué)生進(jìn)一步體驗(yàn)乘法,掌握“用2-5的乘法口訣解決問題”,意在培養(yǎng)學(xué)生建立、運(yùn)用數(shù)學(xué)模型來解決相關(guān)問題能力,從而讓他們感受到數(shù)學(xué)知識與生活實(shí)際的聯(lián)系。基于以上教學(xué)內(nèi)容,我作了如下的教學(xué)設(shè)計(jì):本節(jié)課是在完成了“2---5的乘法口訣”的基礎(chǔ)上,使學(xué)生學(xué)會“用2-5的乘法口訣”解決問題。以回家路上作為主要線索,并通過以下活動實(shí)現(xiàn)教學(xué)目標(biāo)。1、創(chuàng)設(shè)“回家路上”的問題情境,引導(dǎo)學(xué)生提出本節(jié)課的一些數(shù)學(xué)問題。2、通過自主探究,引導(dǎo)學(xué)生建立“用乘法口訣解決問題”的數(shù)學(xué)模型。3、運(yùn)用所建模型,解決相關(guān)問題,并通過練習(xí),讓學(xué)生感受數(shù)學(xué)簡捷思維的優(yōu)勢和廣泛應(yīng)用的價(jià)值。
一、結(jié)合生活情境與操作活動,初步認(rèn)識角,知道角各部分的名稱,初步學(xué)會用尺畫角?! ?.讓學(xué)生結(jié)合熟悉的生活情景圖,并從其中的實(shí)物圖中抽象出角,親歷操作活動來認(rèn)識角,知道角的各部分的名稱,知道一個角由一個頂點(diǎn)和兩條邊組成,初步學(xué)會用尺畫角的方法。 2.通過折疊、拼擺、制作等實(shí)際操作活動,幫助學(xué)生建立對角的感性認(rèn)識,知道什么樣的圖形是角?! ?.讓學(xué)生知道畫一個角的方法:從一個點(diǎn)起,用尺子向不同的方向畫兩條直直的線,就畫成一個角。 4.知道角的大小與角的兩邊的長短沒有關(guān)系,與兩邊叉開的大小有關(guān)?! ?.通過觀察實(shí)物并從中抽象出角,經(jīng)歷數(shù)學(xué)知識抽象的過程,感受到數(shù)學(xué)知識的現(xiàn)實(shí)性,學(xué)會從數(shù)學(xué)的角度去觀察、分析現(xiàn)實(shí)問題,從而激發(fā)學(xué)生探索數(shù)學(xué)的興趣。 二、在課程教學(xué)中,要注重挖掘角在生活中的“原型”。學(xué)生對此有一定的生活積累,但學(xué)生理解來自于他們作用于的物體的活動。因此只有親自操作,獲得直接的經(jīng)驗(yàn),才便于在此基礎(chǔ)上進(jìn)行正確的抽象和概括,形成較系統(tǒng)的概念和數(shù)學(xué)模型。1.教師應(yīng)提供恰當(dāng)?shù)?、精心選擇的生活情景圖,讓學(xué)生找生活中的角,并將這種角與數(shù)學(xué)意義的上角加以區(qū)分、對比觀察,加深對數(shù)學(xué)意義上角的感知,從而引領(lǐng)學(xué)生從數(shù)學(xué)角度認(rèn)識角,建立角的正確表象。
三、教法和學(xué)法要實(shí)現(xiàn)上述教學(xué)目標(biāo),必須考慮教法和學(xué)法。課程標(biāo)準(zhǔn)指出:“有效的教學(xué)活動是學(xué)生學(xué)與教師教的統(tǒng)一,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者?!北局耙詫W(xué)定教”的理念,我先來說說本節(jié)課的學(xué)法。1、學(xué)法本節(jié)課的內(nèi)容是掌握乘法解決實(shí)際問題的方法,為了讓學(xué)生能夠較好地理解知識點(diǎn),掌握方法,我在教學(xué)中安排了(動手操作、自主探索、合作交流、創(chuàng)新學(xué)習(xí)等交給學(xué)生觀察的方法,目的是為了激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高自信心。2、教法數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,因此在教學(xué)中我力求展現(xiàn)獲取知識和方法的思維過程。最后我來說一說這一堂課的教學(xué)過程:
1、地位、作用和特點(diǎn)本節(jié)教材是北師大版小學(xué)數(shù)學(xué)二年級上冊第三單元“數(shù)一數(shù)與乘法”的第2節(jié)課(第18、19頁)。繼上一節(jié)課“有多少塊糖”對連加算式有了一定體驗(yàn)的基礎(chǔ)上,結(jié)合“兒童樂園”的現(xiàn)實(shí)情境,提出并解決其中需要列連加算式進(jìn)行計(jì)算的數(shù)學(xué)問題,并經(jīng)歷把相同加數(shù)的連加算式進(jìn)一步抽象為乘法算式的過程,初步體會乘法運(yùn)算的意義;會把相同加數(shù)的連加算式改寫為乘法算式,體會到乘法的簡便性。為后面有“有多少點(diǎn)子”的學(xué)習(xí)做準(zhǔn)備。2、教學(xué)目標(biāo)1)結(jié)合“兒童樂園”這一現(xiàn)實(shí)的生活情境,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題和解決問題的意識和能力。2)從相同加數(shù)連加的運(yùn)算中抽象出乘法算式,初步體會乘法的意義,并掌握它的讀法、寫法及各部分的名稱。3)結(jié)合具體情境,會把相同加數(shù)連加的算式改寫成乘法算式,并應(yīng)用加法計(jì)算簡單的乘法算式的結(jié)果。
根據(jù)教師之前對課標(biāo)及本課教材內(nèi)容的分析,教師認(rèn)為本課的教學(xué)重點(diǎn)應(yīng)該是,結(jié)合課間活動的具體情境,進(jìn)一步鞏固2和5的乘法口訣,通過圖與式的對應(yīng),進(jìn)一步理解乘法的意義。教學(xué)難點(diǎn)是發(fā)展學(xué)生對乘法的認(rèn)識,包含在教學(xué)重點(diǎn)之中。教學(xué)重難點(diǎn)的突破,教師準(zhǔn)備圍繞教材所設(shè)計(jì)的四個側(cè)重點(diǎn)不同的問題,以教材的第一個問題——圖與式的對應(yīng)(數(shù)形結(jié)合、逆向思維)、第二個問題——根據(jù)數(shù)學(xué)信息解決實(shí)際問題(正向思維),逆正兩種思維方式幫助學(xué)生理解鞏固乘法的意義,同時,在解決教材的第三個問題“一共有多少盆花”后,幫助學(xué)生初步認(rèn)識到乘法的局限性——不能解決加數(shù)不相同的幾個加數(shù)的和。在學(xué)生知道了乘法的能和不能,進(jìn)一步界定了乘法概念的內(nèi)涵后,通過認(rèn)知發(fā)散,找一找自己課間活動中能用乘法解決的問題,幫助學(xué)生將對乘法的認(rèn)知擴(kuò)展到日常生活的應(yīng)用層面,從而達(dá)到其對乘法的進(jìn)一步理解的目的。同時,隨著這四個問題的解決,5、2的乘法口訣也在計(jì)算中得到了練習(xí)鞏固。
教學(xué)目標(biāo):1.再次經(jīng)歷用不同方式測量同一物體長度的過程,體會建立統(tǒng)一度量單位的重要性。2.認(rèn)識厘米,體會厘米的實(shí)際意義。3.初步學(xué)會用刻度尺測量物體和線的長度(限整厘米),能估計(jì)較小物體的長度。教學(xué)重點(diǎn):認(rèn)識長度單位“厘米”教學(xué)難點(diǎn):能正確地用直尺測量物體的長度(限整厘米)。教學(xué)過程:一、【視頻導(dǎo)入,激趣揭題】1、觀看視頻師:有三位同學(xué)在課前用自己喜歡的方法測量了課桌的長度,我們一起來看看(播放三段視頻)問:為什么同一張桌子,測量出的結(jié)果卻不一樣呢?學(xué)生回答。小結(jié):看來測量的標(biāo)準(zhǔn)不同,所得的結(jié)果也就不同了?,F(xiàn)在我們需要一種標(biāo)準(zhǔn)的、同意的測量工具——尺子。2、認(rèn)識尺子課前小研究(一):觀察尺子,你都看到了什么?介紹刻度、刻度線、厘米。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。