從而為列方程找等量關系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個小組,為增強小組討論結果的展示起到了較好的作用.環(huán)節(jié)3中通過讓學生自己設計表格為討論的得出起到輔助作用.2.相信學生并為學生提供充分展示自己的機會本節(jié)課的設計中,通過學生多次的動手操作活動,引導學生進行探索,使學生確實是在舊知識的基礎上探求新內容,探索的過程是沒有難度的任何學生都會動手操作,每個學生都有體會的過程,都有感悟的可能,這種形式讓學生切身去體驗問題的情景,從而進一步幫助學生理解比較復雜的問題,再把實際問題抽象成數學問題.3.注意改進的方面本節(jié)課由于構題新穎有趣,所以一開始就抓住了學生的求知欲望,課堂氣氛活躍,討論問題積極主動.但由于學生發(fā)表自己的想法較多,使得教學時間不能很好把握,導致課堂練習時間緊張,今后予以改進.
解:設截取圓鋼的長度為xmm.根據題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結:圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關系.探究點三:面積變化問題將一個長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
2. 教材分析這節(jié)課的教學是學生在掌握行程問題基本數量關系的基礎上進行的,本課教材給學生提供了“騎車”的情境,通過簡單的路線圖等方式呈現了速度路程等信息。然后要求學生根據這些信息去解決2個問題:①讓學生根據兩輛車的速度信息進行估計,在哪個地方相遇。②用方程解決相遇問題中求相遇時間的問題。3. 學情分析學生已經在三年級接觸了簡單的行程問題,四年級上冊,學生就真正的開始學習速度、時間、路程之間的關系,并用三者的數量關系來解決行程問題。而本節(jié)課正是運用這些學生已有的知識基礎和生活經驗進行相遇問題的探究。4、教學目標從知識與技能、過程與方法、情感態(tài)度價值觀的三維目標出發(fā),制定了以下的目標:①使學生理解相遇問題的意義及特點。②經歷解決問題的過程,提高收集信息、處理信息和建立模型的能力。③會分析簡單實際問題中的數量關系,提高用方程解決簡單的實際問題的能力。
一、教材分析(一)、內容、地位和作用這節(jié)課是義務教育課程標準實驗教科書北師大版七年級第6章《數據的收集與表示》第一節(jié)《數據的收集》的第一課時。在此之前,學生在已經學習了一些初步的數據的處理問題,對運用數據去解決日常生活中的實際問題已有所了解,知道了運用數據的價值。本節(jié)課是在此基礎上對數據的收集又有了更進一步的學習與挖掘。為后面運用數據的知識去分析一些現象打下基礎。新的義務教育課程標準與我國以往的數學課程相比,在教學內容上大大加強了統(tǒng)計和概率,在教學方法上積極倡導自主探索和合作學習,幫助學生通過反復觀察,了解不確定的現象也能夠表現出規(guī)律,整個內容圍繞真實的數據展開教學。依據新課程標準,在教學中,應注重所學內容與日常生活、自然、社會和科學技術領域的聯系,使學生體會統(tǒng)計與概率對制定決策的重要作用。
(1) 這28天中屬于“重度染污”、“中度污染”、“輕度污染”、“良”和“優(yōu)”的天數各有幾天?出現的頻率各是多少?請用一張統(tǒng)計表來表示;(3) 從你作的統(tǒng)計圖表中,你得到哪些結論?說說你的理由.(三)課堂小結:本節(jié)課學習了用統(tǒng)計來直觀來表示數據,并從統(tǒng)計圖中發(fā)現數據間的聯系。整理數據——制統(tǒng)計表1、從資料給出的許多數據中選取相關數據進行整理;2、標目分成橫、縱兩種(允許不同分法);3、把數據放入相應位置。為了更清晰地用統(tǒng)計表展示與描繪數據,統(tǒng)計表必須有規(guī)范的結構:標題(統(tǒng)計表的名稱)標目(如“國家”、“屆數”…)數據、必要的說明(數據的單位、制表日期等)折線統(tǒng)計圖的步驟:(1)寫出統(tǒng)計圖名稱;(2)畫出橫、縱兩條互相垂直的數軸(有時不畫箭頭),分別表示兩個標目的數據;(3)根據橫、縱各個方向上的各對對應的標目數據畫點;(4)用線段把每相鄰兩點連接起來。
最后我引導學生觀察自己手中的量角器引導學生在測量的時候有時用度的單位還不夠就必須用到比度還小的單位分和秒,進而明白度分秒之間的轉換關系,并且引導學生對比和度分秒進制一樣的還有時間。從而進入到例題2的講解。接下來讓學生通過隨堂練習來加強和鞏固本節(jié)課的內容。提高學生對本節(jié)課知識的系統(tǒng)綜合。(四)歸納總結。小結主要由學生完成,我作出適當的補充。最后總結角的比較表方法及估測和某些角之間的等量關系的書寫基本的幾何語句并能根據語句畫出幾何圖形。(五)布置作業(yè)通過作業(yè)及時了解學生學習效果,調整教學安排。使學生通過獨立思考,自我評價學習效果;學會反思,發(fā)現問題;并試著通過閱讀教材、查找資料或與同伴交流解決問題。
(三)學以致用,鞏固新知為鞏固本節(jié)的教學重點我再次給出三道問題: 1)絕對值是7的數有幾個?各是什么?有沒有絕對值是-2的數?2)絕對值是0的數有幾個?各是什么? 3)絕對值小于3的整數一共有多少個?先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。(四)總結歸納,知識升華小結時我也將充分發(fā)揮學生學習的主動性,發(fā)揮教師在教學的啟發(fā)引導作用,和學生一起合作把本節(jié)課所學的內容做一個小結。(五)布置作業(yè),拓展新知布置作業(yè)不是目的,目的是使學生能夠更好地掌握并運用本節(jié)課的內容。所以我會布置這樣一個作業(yè):請學生回家在父母的幫助下,找出南方和北方各三個城市的溫度,并比較這些溫度的大小,并寫出每個溫度的絕對值進行比較
2、某村有耕地346.2公頃,人口數量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數n的函數嗎?是反比例函數嗎?為什么?3、y是x的反比例函數,下表給出了x與y的一些值: (1)寫出這個反比例函數的表達式;(2)根據表達式完成上表。教師巡視個別輔導,學生完畢教師給予評估肯定。II鞏固練習:限時完成課本“隨堂練習”1-2題。教師并給予指導。七、總結、提高。(結合板書小結)今天通過生活中的例子,探索學習了反比例函數的概念,我們要掌握反比例函數是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數,k≠0)同時要注意幾點::①常數k≠0;②自變量x不能為零(因為分母為0時,該式沒意義);③當 可寫為 時注意x的指數為—1。④由定義不難看出,k可以從兩個變量相對應 的任意一對對應值的積來求得,只要k確定了,這個函數就確定了。
解:(1)根據題意,可得y=100025x,化簡得y=40x;(2)根據題設可知自變量x的取值范圍為0<x<85.方法總結:反比例函數的自變量取值范圍是全體非零實數,但在解決實際問題的過程中,自變量的取值范圍要根據實際情況來確定.解題過程中應該注意對題意的正確理解.三、板書設計反比例函數概念:一般地,如果兩個變量x,y之間 的對應關系可以表示成y=kx(k 為常數,k≠0)的形式,那么稱y 是x的反比例函數,反比例函數 的自變量x不能為0確定表達式:待定系數法建立反比例函數的模型結合實例引導學生了解所討論的函數的表達形式,形成反比例函數概念的具體形象,從感性認識到理性認識的轉化過程,發(fā)展學生的思維.利用多媒體創(chuàng)設大量生活情境,讓學生體驗數學來源于生活實際,并為生活實際服務,讓學生感受數學有用,從而培養(yǎng)學生學習數學的興趣.
(2)如果對應著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據兩矩形的對應邊是否成比例來判斷兩矩形是否相似;(2)根據矩形相似的條件列出等量關系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設兩個矩形相似,不妨設小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結:因為矩形的四個角均是直角,所以在有關矩形相似的問題中,只需看對應邊是否成比例,若成比例,則相似,否則不相似.
(2)相似多邊形的對應邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質.活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學生活動:學生通過例題運用相似多邊形的性質,正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應重點關注:(1)學生參與活動的熱情及語言歸納數學結論的能力;(2)學生對于相似多邊形的性質的掌握情況.三、回顧與反思.(1)談談本節(jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習題4.4
目的:進一步理解追擊問題的實質,與課程引入中的灰太狼追喜羊羊故事呼應,問題得到解決。環(huán)節(jié)三、運用鞏固活動內容:育紅學校七年級學生步行郊外旅行,1班的學生組成前隊,步行速度為4千米/小時,3班的學生組成后隊,步行速度為6千米/小時,1班出發(fā)一個小時后,3班才出發(fā)。請根據以上的事實提出問題并嘗試回答。問題1:3班追上1班用了多長時間 ?問題2:3班追上1班時,他們離學校多遠?問題3:………………目的:給學生提供進一步鞏固建立方程模型的基本過程和方法的熟悉機會,讓學生活學活用,真正讓學生學會借線段圖分析行程問題的方法,得出其中的等量關系,從而正確地建立方程求解問題,同時還需注意檢驗方程解的合理性.實際活動效果:由于題目較簡單,所以學生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數m的范圍;(2)若該直線的斜率k=1,求實數m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學生從正反兩方面雙向建構.突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學生體會到代數式存在的普遍性;讓學生給自己構造的一些簡單代數式賦予實際意義,進一步體會代數式的模型思想;通過“主題研究”等環(huán)節(jié)進一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學生在傾聽、質疑、說服、推廣的過程中得到“同化”和“順應”,直至豁然開朗,突破思維的瓶頸.2.生成預設為生成服務,本案編代數式、主題研究等環(huán)節(jié)的設計為學生精彩的生成提供了很好的平臺,在實際教學過程中,教師要注重生成信息的捕捉,善于發(fā)現學生思維的亮點,及時進行引導和激勵,并根據具體教學對象,適當調整教與學,使教學過程真正成為生成教育智慧和增強實踐能力的過程.讓預設與生成齊飛.
三、典型例題,應用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結果,每種結果出現的可能性相同,能配成紫色的共4種(紅1,藍)(紅2,藍)(藍,紅1)(藍,紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉盤做“配紫色”游戲,每個轉盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設計兩個轉盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結,回顧新知1. 利用樹狀圖和列表法求概率時應注意什么?2. 你還有哪些收獲和疑惑?
活動目的:(1)通過小組討論活動,讓學生理解坐標系的特點,并能應用特點解決問題。(2)培養(yǎng)學生逆向思維的習慣。(3)在小組討論中培養(yǎng)學生勇于探索,團結協(xié)作的精神。第四環(huán)節(jié):練習隨堂練習 (體現建立直角坐標系的多樣性)(補充)某地為了發(fā)展城市群,在現有的四個中小城市A,B,C,D附近新建機場E,試建立適當的直角坐標系,并寫出各點的坐標。第五環(huán)節(jié):小結內容:小結本節(jié)課自己的收獲和進步,從知識和能力上兩個方面總結,老師予于肯定和鼓勵。目的:鼓勵學生大膽發(fā)言,敢于表達自己的觀點,同時學生之間可以相互學習,共同提高,老師給予肯定和鼓勵,激發(fā)學生的學習熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習題5.5。B類:完成A類同時,補充:(1)已知點A到x軸、y軸的距離均為4,求A點坐標;(2)已知x軸上一點A(3,0),B(3,b),且AB=5,求b的值。
說明:此處進行的是一次嘗試應用乘方運算來解決開頭的問題,互相呼應,以體現整節(jié)課的完整性,把學生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對折56次后有多厚?試驗一下你能折這么厚嗎?說明:這個探索實際上仍是對學生應用能力的一個檢查,紙對折56次,用什么運算來計算比較方便,另外計算過程中可使用計算器,進一步加深對乘方意義的理解(五)作業(yè)P56頁1、2說明:這兩個習題是對課本上例題的簡單重復和模仿,通過本節(jié)課的學習,多數學生應該可以較輕松地完成??傊?,在整個教學設計中,我始終以學生為課堂主體,讓他們積極參與到教學中來,不斷從舊知識中獲得新的認識,通過不斷進行聯系比較,讓學生主動自覺地去思考、探索、總結直至發(fā)現結果、發(fā)現"方法",進而優(yōu)化了整個教學。
證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結:證明四條線段成比例時,如果圖形中有平行線,則可以直接應用平行線分線段成比例的基本事實以及推論得到相關比例式.如果圖中沒有平行線,則需構造輔助線創(chuàng)造平行條件,再應用平行線分線段成比例的基本事實及其推論得到相關比例式.三、板書設計平行線分線段成比例基本事實:兩條直線被一組平行線所截, 所得的對應線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應線段成比例通過教學,培養(yǎng)學生的觀察、分析、概括能力,了解特殊與一般的辯證關系.再次鍛煉類比的數學思想,能把一個復雜的圖形分成幾個基本圖形,通過應用鍛煉識圖能力和推理論證能力.在探索過程中,積累數學活動的經驗,體驗探索結論的方法和過程,發(fā)展學生的合情推理能力和有條理的說理表達能力.