提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

“公民素質(zhì)教育實(shí)踐活動(dòng)”國(guó)旗下講話稿:公民素質(zhì),從點(diǎn)滴做起

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)小數(shù)的意義和性質(zhì)教案2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)小數(shù)的意義和性質(zhì)教案2篇

    用米作單位,用分?jǐn)?shù)怎么表示呢?(1/10米)師:1/10米也可以寫成0.1米。師:請(qǐng)同學(xué)們看米尺,從0到30,從0到70,應(yīng)該是幾分米,十分之幾米?用小數(shù)怎樣表示呢?可先和同桌商量商量。學(xué)生同桌討論后反饋師根據(jù)反饋結(jié)果提問:請(qǐng)同學(xué)觀察一下1/10米和0.1米,3/10米和0.3米,7/10米和0.7米之間有什么關(guān)系?隨學(xué)生的回答出示1/10米=0.1米 3/10米=0.3米 7/10米=0.7米。再讓學(xué)生觀察上面的等式,四人小組討論你發(fā)現(xiàn)了什么?使學(xué)生通過討論明確:分母是10的分?jǐn)?shù)可以寫成一位小數(shù),一位小數(shù)表示十分之幾。2、 認(rèn)識(shí)兩位小數(shù) 、三位小數(shù)師:我們已經(jīng)知道了一位小數(shù)表示十分之幾,那么請(qǐng)同學(xué)猜一猜兩位小數(shù)與什么樣的分?jǐn)?shù)有關(guān)?三位小數(shù)與什么樣的分?jǐn)?shù)有關(guān)?(具體的步驟和前面相似)讓學(xué)生根據(jù)一位小數(shù)表示十分之幾,猜想出兩位小數(shù)和什么樣的分?jǐn)?shù)有關(guān)?有意識(shí)地促進(jìn)“遷移”,使學(xué)生在學(xué)會(huì)的同時(shí)學(xué)習(xí)能力也得到提高。關(guān)于計(jì)數(shù)單位的教學(xué)我個(gè)人認(rèn)為還是放到52頁小數(shù)數(shù)位順序表這里教學(xué)比較妥當(dāng)。

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)角平分線的性質(zhì)教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)角平分線的性質(zhì)教案

    解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計(jì)1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)不等式的基本性質(zhì)教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)不等式的基本性質(zhì)教案

    【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向才改變.三、板書設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號(hào)的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯(cuò)誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)等腰三角形的性質(zhì)教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)等腰三角形的性質(zhì)教案

    方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會(huì)遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對(duì)稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對(duì)稱軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)線段垂直平分線的性質(zhì)教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)線段垂直平分線的性質(zhì)教案

    解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識(shí).線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個(gè)公共汽車站,A,B是路邊兩個(gè)新建小區(qū),這個(gè)公共汽車站C建在什么位置,能使兩個(gè)小區(qū)到車站的路程一樣長(zhǎng)(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)分式的基本性質(zhì)教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)分式的基本性質(zhì)教案

    【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當(dāng)分子、分母是多項(xiàng)式時(shí)應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計(jì)1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變.2.符號(hào)法則:分式的分子、分母及分式本身,任意改變其中兩個(gè)符號(hào),分式的值不變;若只改變其中一個(gè)符號(hào)或三個(gè)全變號(hào),則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢(shì)探究分式變號(hào)法則.在每個(gè)活動(dòng)中,都設(shè)計(jì)了具有啟發(fā)性的問題,對(duì)各個(gè)知識(shí)點(diǎn)進(jìn)行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習(xí).一步一步的來完成既定目標(biāo).整個(gè)學(xué)習(xí)過程輕松、愉快、和諧、高效.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)三角形的全等和等腰三角形的性質(zhì)教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)三角形的全等和等腰三角形的性質(zhì)教案

    證明:過點(diǎn)A作AF∥DE,交BC于點(diǎn)F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時(shí),先必須已知一個(gè)條件,這個(gè)條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時(shí),一般要用到其中的兩條線互相重合.三、板書設(shè)計(jì)1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對(duì)等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個(gè)條件,就能得出另外的兩個(gè)結(jié)論.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)旋轉(zhuǎn)的定義和性質(zhì)教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)旋轉(zhuǎn)的定義和性質(zhì)教案

    (3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.

  • 人教部編版道德與法制五年級(jí)下冊(cè)富起來到強(qiáng)起來說課稿

    人教部編版道德與法制五年級(jí)下冊(cè)富起來到強(qiáng)起來說課稿

    4. 今天我們繼續(xù)學(xué)習(xí)《富起來到強(qiáng)起來》 。 活動(dòng)一:了解社會(huì)主義核心價(jià)值觀1. 看過了視頻,接下來由各個(gè)小組與我們分享他們?cè)谡n下準(zhǔn)備的核心價(jià)值 觀小品,每組表演時(shí),剩下的小組猜測(cè)表演的是哪一個(gè)核心價(jià)值觀并在活動(dòng)評(píng) 價(jià)單上進(jìn)行評(píng)分。2. 教師總結(jié):“精神文明建設(shè)使人們的生活更美好”教師引導(dǎo)學(xué)生:精神文明建設(shè)搞好了,人心凝聚,精神振奮,各項(xiàng)事業(yè)才 會(huì)全面興盛?;顒?dòng)二:走進(jìn)新時(shí)代,懷揣中國(guó)夢(mèng)。1. 播放“中國(guó)夢(mèng)”優(yōu)秀少兒演講視頻。2. 閱讀課本,交流感想。 活動(dòng)三:爭(zhēng)做時(shí)代好少年1. 回顧各小組的表演,把其中所有的不良習(xí)慣和閃光舉動(dòng)逐個(gè)挑出來再次 強(qiáng)調(diào)。2. 小組交流班級(jí)內(nèi)部常見的壞習(xí)慣。教師總結(jié)。 總結(jié)延伸:通過本節(jié)課的學(xué)習(xí)了解到青少兒應(yīng)積極投身于社會(huì)主義精神文明建設(shè)的偉 大實(shí)踐中去,做新時(shí)代的好少,做新時(shí)期中國(guó)先進(jìn)文化的傳播者。

  • 2024年國(guó)企集團(tuán)公司上半年工作總結(jié)和下半年計(jì)劃業(yè)務(wù)匯報(bào)

    2024年國(guó)企集團(tuán)公司上半年工作總結(jié)和下半年計(jì)劃業(yè)務(wù)匯報(bào)

    二是聚焦能力建設(shè),掌握新技術(shù),打造競(jìng)爭(zhēng)力。當(dāng)前檢測(cè)企業(yè)間競(jìng)爭(zhēng)日趨激烈,國(guó)際事業(yè)部人才流失較為明顯,推動(dòng)發(fā)展的“驅(qū)動(dòng)力”呈現(xiàn)弱勢(shì)。我們將圍繞國(guó)際化人才梯隊(duì)建設(shè),出臺(tái)配套支持政策,提升隊(duì)伍能力,快速掌握Wi-Fi7、5G毫米波等前沿?zé)o線技術(shù),提升本地化測(cè)試能力,解決客戶產(chǎn)品全生命周期中面臨的新技術(shù)導(dǎo)入滯后、認(rèn)證標(biāo)準(zhǔn)理解偏差等問題,助力企業(yè)打造具有國(guó)際競(jìng)爭(zhēng)力的產(chǎn)品。三是聚焦業(yè)務(wù)推廠,瞄準(zhǔn)大趨勢(shì),實(shí)現(xiàn)大突破。面對(duì)國(guó)際認(rèn)證市場(chǎng)日益萎縮的現(xiàn)狀,我們將把視線放到發(fā)展“潛力”上來,更加重視“一帶一路”國(guó)家和第三世界國(guó)家的需要,立足檢測(cè)中心的技術(shù)、服務(wù)優(yōu)勢(shì),依托我國(guó)“一帶一路”整體思路,針對(duì)發(fā)展中國(guó)家檢測(cè)能力弱、發(fā)展需求大等特點(diǎn),以產(chǎn)業(yè)升級(jí)、技術(shù)出口,找到國(guó)際業(yè)務(wù)發(fā)展“突破點(diǎn)”“新藍(lán)?!?。

  • 北師大版初中數(shù)學(xué)八年級(jí)下冊(cè)提公因式法說課稿

    北師大版初中數(shù)學(xué)八年級(jí)下冊(cè)提公因式法說課稿

    設(shè)計(jì)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)公因式概念的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.但依然有部分同學(xué)會(huì)出現(xiàn)問題,如對(duì)首項(xiàng)出現(xiàn)負(fù)號(hào)時(shí)不能正確處理,此時(shí),需要老師進(jìn)一步引導(dǎo).第四環(huán)節(jié) 課堂小結(jié)從今天的課程中,你學(xué)到了哪些知識(shí)?你認(rèn)為提公因式法與單項(xiàng)式乘多項(xiàng)式有什么關(guān)系?怎樣用提公因式法分解因式?設(shè)計(jì)目的:通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)確定公因式的方法及提公因式法的步驟的理解,進(jìn)一步清楚地了解提公因式法與單項(xiàng)式乘多項(xiàng)式的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。第五環(huán)節(jié) 當(dāng)堂檢測(cè)把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2設(shè)計(jì)目的:檢驗(yàn)學(xué)生的目標(biāo)達(dá)成情況,其中第五小題供學(xué)有余力的學(xué)生選作。第六環(huán)節(jié) 課后反思教學(xué)反思

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)變形后提公因式因式分解教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)變形后提公因式因式分解教案

    (3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計(jì)算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計(jì)算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計(jì)1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時(shí)是在上一課時(shí)的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時(shí)要給學(xué)生足夠主動(dòng)權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵(lì)學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時(shí)提高學(xué)生的邏輯思維能力.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)直接提公因式因式分解教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)直接提公因式因式分解教案

    解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡(jiǎn)便.三、板書設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.

  • 小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第2課點(diǎn)的魅力2》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第2課點(diǎn)的魅力2》教學(xué)設(shè)計(jì)說課稿

    一、導(dǎo)入新課上課,同學(xué)們好!今天的美術(shù)課和平時(shí)有點(diǎn)不一樣,主要有兩個(gè)方面,其一、教室里來了許多老師和我們一起來上這一堂美術(shù)課,大家用掌聲表示歡迎。其二、就是唐老師為大家?guī)砹艘晃恍』锇椋瑢W(xué)們肯定會(huì)喜歡上它的,大家看,它來了--展示課件動(dòng)畫圖片和播放聲音,出現(xiàn)一個(gè)小圓點(diǎn),(說話:同學(xué)們,大家好!我的名字叫小圓點(diǎn),我喜歡穿各種色彩的衣服,我的本領(lǐng)可大啦!能大能小,位置和大小的變化還能給人產(chǎn)生不一樣的感覺!在生活中和美術(shù)作品中經(jīng)??梢砸姷轿业纳碛埃〈蠹叶挤Q我為魅力的小圓點(diǎn)呢?。?/p>

  • 小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第2課點(diǎn)的魅力1》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第2課點(diǎn)的魅力1》教學(xué)設(shè)計(jì)說課稿

    2學(xué)情分析四年級(jí)的學(xué)生正處于素質(zhì)教育的階段,學(xué)生對(duì)美術(shù)正逐步深入了解,并掌握了一些美術(shù)基礎(chǔ)知識(shí)和基本技能,多數(shù)同學(xué)對(duì)美術(shù)興趣濃厚,有較強(qiáng)的求知欲和教強(qiáng)的創(chuàng)新力,學(xué)生的美術(shù)素質(zhì)得到進(jìn)一步提高。3重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):讓學(xué)生從大自然和生活的萬物中發(fā)現(xiàn)線條的幾種變化,發(fā)現(xiàn)圓點(diǎn)在紙上的不同位置產(chǎn)生的不同感覺。

  • 人教部編版道德與法制一年級(jí)下冊(cè)我想和你們一起玩說課稿

    人教部編版道德與法制一年級(jí)下冊(cè)我想和你們一起玩說課稿

    (1) 有人叫我大胖豬,我不想和他玩了。(2) 我們一起警察抓小偷的游戲,總讓我當(dāng)小偷,他當(dāng)警察, 我心里很不開心。(3) 每次玩跳繩都是他們幾個(gè)人玩大繩,不給我們玩。(4) 體育課上,我們玩兩人三足的游戲,總是女生贏,我們男生總是輸。結(jié)果好多男生都不玩了,大家還吵起來,游戲也進(jìn)行不下去了。2. 老師在課下也抓拍到了一些同學(xué)發(fā)生了一些不愉快,我們一起 去看一看,他們?yōu)槭裁赐娌幌氯チ??播放不守?guī)則的視頻。小組討論,說出自己的想法和做法。小結(jié):看了大家的表演,大家做的都很不錯(cuò),都學(xué)會(huì)了如何交朋友。發(fā)生了矛盾也沒什么,我們應(yīng)該多溝通,相互謙讓,包容, 遵守游戲規(guī)則,大家在一起還是好朋友。同學(xué)們看,我們的歡樂號(hào)已經(jīng)準(zhǔn)備就緒,我們一起手拉手揚(yáng)帆起航吧!構(gòu)建和諧文明校園從我做起?!驹O(shè)計(jì)意圖:通過交流討論鼓勵(lì)學(xué)生擴(kuò)大交往范圍,給主動(dòng)交往的,謙讓、寬容、 鼓勵(lì)言行給予肯定,樹立樂群的信心。】

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級(jí)下冊(cè)乘除法解決實(shí)際問題 說課稿2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級(jí)下冊(cè)乘除法解決實(shí)際問題 說課稿2篇

    (三)、練習(xí)鞏固,拓展應(yīng)用:1、出示依據(jù)教科書第31頁“做一做”制成的課件。請(qǐng)學(xué)生看題,說說圖意:提醒學(xué)生想一想,要解決“用這些花可以擺多少個(gè)圖案”這個(gè)問題已經(jīng)有什么數(shù)據(jù)(小朋友設(shè)計(jì)的“每6盆花可以擺一個(gè)圖案”和“兩組盆花,每組有9盆花”),還缺少什么信息數(shù)據(jù)(一共有多少盆花?)。應(yīng)怎樣解決?2、讓學(xué)生自已嘗試解決。學(xué)生完成后,請(qǐng)學(xué)生交流解決問題的過程,促使學(xué)生弄清楚解決用乘法和除法兩法計(jì)算解決問題的步驟。3、讓學(xué)生自己提出問題,解決問題。注意引導(dǎo)學(xué)生提出用乘法和除法計(jì)算的問題。4、匯報(bào)交流:說說自己提出的問題先解決什么,再解決什么。師選擇有價(jià)值的問題寫在黑板上。5、比較發(fā)現(xiàn),鞏固算法:讓學(xué)生比較例4和“做一做”,有什么相同點(diǎn)和不同點(diǎn)。特別是不同點(diǎn),讓學(xué)生觀察得出例4是先解決一輛小汽車的價(jià)錢是多少元?再解決5輛小汽車多少錢;“做一做”是先解決共有幾盆花?再解決可以擺幾種圖案。使學(xué)生明白乘除兩步計(jì)算解決問題的不同特征。

  • 人教部編版道德與法制三年級(jí)下冊(cè)我很誠(chéng)實(shí)說課稿

    人教部編版道德與法制三年級(jí)下冊(cè)我很誠(chéng)實(shí)說課稿

    小文因?yàn)閻勖孀印⑻摌s心而說謊,最后丟了面子。在同學(xué)們的幫助下他找到了自己說謊的原因,從而得到了大家的原諒,相信他一定會(huì)用實(shí)際行動(dòng)改正的。(出示不虛榮)活動(dòng)四情境分析出主意1. 導(dǎo)語有兩位同學(xué)因?yàn)槠渌蛞舱f謊了,同學(xué)們?cè)敢鈳蛶退麄儐岐滴覀儊砺犅牎?.出示任務(wù)出示并閱讀教材第19頁圖片。請(qǐng)你判斷一下,兩位同學(xué)各是因?yàn)槭裁礇]有說實(shí)話你能幫他們擺脫困境嗎?3.反饋指導(dǎo)⑴學(xué)生交流討論,分析說謊原因。⑵學(xué)生情景再現(xiàn),給李宏和張芳出主意,幫助他們擺脫困境。⑶教師在以上環(huán)節(jié)相機(jī)提出你是否也因?yàn)槟撤N原因而說過謊說謊以后你的心情怎樣有什么不好的后果你應(yīng)該吸取什么教訓(xùn)3. 小結(jié)同學(xué)們說的真好,平時(shí)我們不能因?yàn)楹ε露f謊,也不能因?yàn)楹脛俣f謊,要做一個(gè)誠(chéng)實(shí)的人。(出示不膽怯、不好勝)拓展延伸1.導(dǎo)語同學(xué)們,我們身邊還有哪些誠(chéng)實(shí)行為呢2. 出示任務(wù)“做人千萬條,誠(chéng)實(shí)第一條”的板貼掛在教室的墻上,如果發(fā)現(xiàn)我們身邊誠(chéng)實(shí)的人和事,立即記錄下來張貼在這塊板貼上。

  • 人教部編版七年級(jí)下冊(cè)綜合性學(xué)習(xí)天下國(guó)家教案

    人教部編版七年級(jí)下冊(cè)綜合性學(xué)習(xí)天下國(guó)家教案

    我榮幸地以中華民族一員的資格,而成為世界公民。我是中國(guó)人民的兒子。我深情地愛著我的祖國(guó)和人民。 ——鄧小平一個(gè)人只要熱愛自己的祖國(guó),有一顆愛國(guó)之心,就什么事情都能解決。什么苦楚,什么冤屈都受得了。 ——冰心做人最大的事情是什么呢?就是要知道怎么樣愛國(guó)。 ——孫中山能夠獻(xiàn)身于自己祖國(guó)的事業(yè),為實(shí)現(xiàn)理想而斗爭(zhēng),這是最光榮不過的事情了?!獏怯裾峦鈬?guó)愛國(guó)名言示例:我們?yōu)樽鎳?guó)服務(wù),也不能都采用同一方式,每個(gè)人應(yīng)該按照資稟,各盡所能?!璧驴v使世界給我珍寶和榮譽(yù),我也不愿離開我的祖國(guó)。因?yàn)榭v使我的祖國(guó)在恥辱之中,我還是喜歡、熱愛、祝福我的祖國(guó)。 ——裴多菲我重視祖國(guó)的利益,甚于自己的生命和我所珍愛的兒女。 ——莎士比亞我無論做什么,始終在想著,只要我的精力允許我的話,我就要首先為我的祖國(guó)服務(wù)。 ——巴甫洛夫

上一頁123...123124125126127128129130131132133134下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!