一、說教材《分式的加減法》是本冊教材第三章《分式》重要內(nèi)容,是進(jìn)一步學(xué)習(xí)分式方程、反比例函數(shù)以及其它數(shù)學(xué)知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科不可缺少的工具。與其它數(shù)學(xué)知識一樣,它在實際生活中有著廣泛的應(yīng)用。學(xué)習(xí)分式的加減法并熟練地進(jìn)行運算是學(xué)好分式運算的關(guān)鍵,為學(xué)生綜合運用多種運算法則拓寬了空間,有利于學(xué)生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學(xué)難度有所增加,學(xué)生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應(yīng)用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標(biāo)和重點、難點如下:(一)說教學(xué)目標(biāo):1.知識與技能目標(biāo):理解并掌握異分母分式加減法的法則;經(jīng)歷異分母分式的加減運算和通分的過程,訓(xùn)練學(xué)生的分式運算能力,培養(yǎng)學(xué)生在學(xué)習(xí)中轉(zhuǎn)化未知問題為已知問題的能力;進(jìn)一步通過實例發(fā)展學(xué)生的符號感。
至此,估計學(xué)生基本能夠掌握定理,達(dá)到預(yù)定目標(biāo),這時,利用提問形式,師生共同進(jìn)行小結(jié)。五、幾點說明1、板書設(shè)計:為了使本節(jié)課更具理論性、邏輯性,我將板書設(shè)計分為三部分,第一部分為圓的軸對稱性,第二部分為垂徑定理,第三部分為測評反饋區(qū)(學(xué)生板演區(qū))。2、由于垂徑定理在圓一章中的重要性,所以這節(jié)課只講了定理而沒有涉及逆定理。3、設(shè)計要突出的特色:為了給學(xué)生營造一個民主、平等而又富有詩意的課堂,我以新數(shù)學(xué)課程標(biāo)準(zhǔn)下的基本理念和總體目標(biāo)為指導(dǎo)思想,在教學(xué)過程中始終面向全體學(xué)生,依據(jù)學(xué)生的實際水平,選擇適當(dāng)?shù)慕虒W(xué)起點和教學(xué)方法,充分讓學(xué)生參與教學(xué),在合作交流的過程中,獲得良好的情感體驗。通過“實驗--觀察--猜想--證明”的思想,讓每個學(xué)生都有所得,我注意前后知識的鏈接,進(jìn)行各學(xué)科間的整合,為學(xué)生提供了廣闊的思考空間,同時讓學(xué)生利用所學(xué)知識解決實際問題,感受理論聯(lián)系實際的思想方法。
注意強調(diào)概念理解不到位的方面:① tanA是一個完整的符號,它表示∠A的正切,記號里習(xí)慣省去角的符號“∠”,若用三個字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過給出直角三角形的任兩邊的長,讓學(xué)生求∠A,∠B的正切及時強化學(xué)生對概念的3、正切函數(shù)的應(yīng)用理解通過實際問題的解答進(jìn)一步了解梯子的傾斜程度、坡度與正切函數(shù)的關(guān)系;對學(xué)生進(jìn)行正切的變式訓(xùn)練,讓學(xué)生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習(xí)的安插注意梯度,讓不同的學(xué)生有不同的發(fā)展。4、最后小結(jié)本節(jié)課的知識要點及注意點五、達(dá)標(biāo)測試具體思路:把幾個問題分為四個等級,方便對學(xué)生的了解;通過評價讓學(xué)生對自己的學(xué)習(xí)也做到心中有數(shù)。
1、圓的半徑是 ,假設(shè)半徑增加 時,圓的面積增加 。(1)寫出 與 之間的關(guān)系表達(dá)式;(2)當(dāng)圓的半徑分別增加 , , 時,圓的面積增加多少?!驹O(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。2、籬笆墻長 ,靠墻圍成一個矩形花壇,寫出花壇面積 與長 之間的函數(shù)關(guān)系式,并指出自變量的取值范圍。【設(shè)計意圖】此題稍微復(fù)雜些,旨在讓學(xué)生能夠開動腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。(六) 小結(jié)思考本節(jié)課你有哪些收獲?還有什么不清楚的地方?【設(shè)計意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補充。(七)布置作業(yè),提高升華必做題:課本P39-40隨堂練習(xí)第1題,習(xí)題2.1第1題;
(設(shè)計意圖:因為圓中有關(guān)的點、線、角及其他圖形位置關(guān)系的復(fù)雜,學(xué)生往往因?qū)σ阎獥l件的分析不夠全面,忽視某個條件,某種特殊情況,導(dǎo)致漏解。采用小組討論交流的方式進(jìn)行要及時進(jìn)行小組評價。)(3) 議一議( 如圖,OA、OB、OC都是圓O的半徑∠AOB=2∠BOC, 求證:∠ACB=2∠BAC。)(設(shè)計意圖:通過練習(xí),使學(xué)生能靈活運用圓周角定理進(jìn)行幾何題的證明,規(guī)范步驟,提高利用定理解決問題的能力。)(三)說小結(jié)首先,通過學(xué)生小組交流,談一談你有什么收獲。(提示學(xué)生從三方面入手:1、學(xué)到了知識;2、掌握了哪些數(shù)學(xué)方法;3、體會到了哪些數(shù)學(xué)思想。)然后,教師引導(dǎo)小組間評價。使學(xué)生對本節(jié)內(nèi)容有一個更系統(tǒng)、深刻的認(rèn)識,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的飛躍。(四)、板書設(shè)計為了集中濃縮和概括本課的教學(xué)內(nèi)容,使教學(xué)重點醒目、突出、合理有序,以便學(xué)生對本課知識點有了完整清晰的印象。我只選擇了本節(jié)課的兩個知識點作為板書。
教學(xué)過程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書設(shè)計 (一)、新課引入教師提問:一個直角三角形中,一個銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關(guān)系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關(guān)系?____________________;【設(shè)計意圖】回顧上節(jié)課所學(xué)的內(nèi)容,便于后面教學(xué)的開展。 (二)、探究新知活動一、探索特殊角的三角函數(shù),并填寫課本表格[問題] 1、觀察一副三角尺,其中有幾個銳角?它們分別等于多少度? [問題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問題] 3、cos30°等于多少?tan30°呢? [問題] 4、我們求出了30°角的三個三角函數(shù)值,還有兩個特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,從而有效地增強了學(xué)生對角以及角平分線的性質(zhì)的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強鞏固和訓(xùn)練
方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進(jìn)行化簡.三、板書設(shè)計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點,既增加了學(xué)習(xí)興趣,又增強了學(xué)生的動手能力
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(yuǎn)(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進(jìn)行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計算即可.
解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?
【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個負(fù)數(shù)時,不等號的方向才改變.三、板書設(shè)計1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個負(fù)數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運用性質(zhì)進(jìn)行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學(xué)時,鼓勵學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.
解:(1)設(shè)第一次購買的單價為x元,則第二次的單價為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗,x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進(jìn)價為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應(yīng)該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動的流程.三、板書設(shè)計列分式方程解應(yīng)用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準(zhǔn)等量關(guān)系,列出方程;第四步,解方程,并驗根,還要看方程的解是否符合題意;最后作答.
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設(shè)計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當(dāng)B≠0時,分式有意義;當(dāng)B=0時,分式無意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時,分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學(xué)生解決,問題由易到難,層層深入,既復(fù)習(xí)了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應(yīng)注意循序性,先易后難、由簡到繁、層層遞進(jìn),臺階式的提問使問題解決水到渠成.
【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產(chǎn)生增根;(2)分式方程檢驗的方法.
把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計算出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書設(shè)計一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時,先解每一個不等式,再確定各個不等式組的解集的公共部分.
分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當(dāng)分母是多項式時,一般應(yīng)先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應(yīng)當(dāng)乘的單項式,分子也相應(yīng)地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當(dāng)x=1時,購買資金為12×1+10×9=102(萬元);當(dāng)x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺.方法總結(jié):此題將現(xiàn)實生活中的事件與數(shù)學(xué)思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應(yīng)把幾種情況進(jìn)行比較.三、板書設(shè)計應(yīng)用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與,講練結(jié)合,引導(dǎo)學(xué)生找不等關(guān)系列不等式.在教學(xué)過程中,可通過類比列一元一次方程解決實際問題的方法來學(xué)習(xí),讓學(xué)生認(rèn)識到列方程與列不等式的區(qū)別與聯(lián)系.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
教學(xué)目標(biāo)(一)教學(xué)知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進(jìn)一步體會三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計算器進(jìn)行有關(guān)三角函數(shù)的計算,并能對結(jié)果的意義進(jìn)行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動,提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進(jìn)一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和解決問題的能力.教學(xué)難點根據(jù)題意,了解有關(guān)術(shù)語,準(zhǔn)確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示
設(shè)計意圖:體會公共設(shè)施被破壞,給人們的生活帶來的不便和危害。活動二:保護(hù)我們的“朋友” 首先,課件出示有關(guān)破壞公共設(shè)施行為處罰的相關(guān)法律條文,學(xué)生說一說,破壞公共設(shè)施會受到怎樣的法律制裁。接著,教師列 舉一些社會生活中因破壞公共設(shè)施而受到法律制裁的事例。然后,課件出示幾個公共設(shè)施受到損壞的場景,教師引導(dǎo)學(xué)生 說一說,該怎么辦?并板書。設(shè)計意圖:知道愛護(hù)公共設(shè)施是每個公民的責(zé)任和義務(wù),破壞 公共設(shè)施會受到法律制裁。活動三:善待我們的“朋友”學(xué)生閱讀教材第 56 頁的兩幅圖片,傾聽一些公共設(shè)施的“心 聲”。然后,課件出示幾幅公共設(shè)施的圖片,學(xué)生小組交流這些公共 設(shè)施被損壞的原因,討論文明使用公共設(shè)施的金點子。全班交流匯 報,教師相機引導(dǎo),并板書。