3、工業(yè)革命引起社會(huì)關(guān)系變化——形成兩大對(duì)立的工業(yè)資產(chǎn)階級(jí)和無產(chǎn)階級(jí)工業(yè)資產(chǎn)階級(jí)和工業(yè)無產(chǎn)階級(jí)成為社會(huì)的兩大階級(jí)。工業(yè)資產(chǎn)階級(jí)獲得更多的政治權(quán)利,各國通過改革,鞏固了資產(chǎn)階級(jí)的統(tǒng)治。 4、工業(yè)革命推動(dòng)資產(chǎn)階級(jí)調(diào)整內(nèi)外政策——自由主義與殖民擴(kuò)張對(duì)內(nèi),希望進(jìn)一步擺脫封建束縛,要求自由經(jīng)營、自由競爭和自由貿(mào)易。重商主義被自由放任政策所取代。對(duì)外,加快了殖民擴(kuò)張和殖民掠奪的步伐。三、世界市場的基本形成1、原因條件(1)工業(yè)革命的展開使世界貿(mào)易的范圍和規(guī)模迅速擴(kuò)大1840年前后,英國的大機(jī)器工業(yè)基本上取代了工場手工業(yè),率先完成了工業(yè)革命,成為世界上第一個(gè)工業(yè)國家。之后,法國和美國等國也相繼完成工業(yè)革命。隨著工業(yè)革命的展開,資產(chǎn)階級(jí)竭力在全世界拓展市場,搶占原料產(chǎn)地,使世界貿(mào)易的范圍和規(guī)模迅速擴(kuò)大。
本節(jié)課標(biāo)解讀:1.說明以種植業(yè)為主的農(nóng)業(yè)地域類型的形成條件及特點(diǎn);2.說出商品谷物農(nóng)業(yè)的分布范圍,說明商品谷物農(nóng)業(yè)的形成條件及特點(diǎn)。內(nèi)容地位與作用:農(nóng)業(yè)是受自然環(huán)境影響最大的產(chǎn)業(yè)。農(nóng)業(yè)是發(fā)展歷史最悠久的產(chǎn)業(yè),隨著社會(huì)的發(fā)展和進(jìn)步,社會(huì)環(huán)境對(duì)農(nóng)業(yè)的影響越來越大。以季風(fēng)水田農(nóng)業(yè)為主的農(nóng)業(yè)地域類型,主要體現(xiàn)自然環(huán)境對(duì)農(nóng)業(yè)地域形成的影響;商品谷物農(nóng)業(yè)則體現(xiàn)了社會(huì)環(huán)境對(duì)農(nóng)業(yè)地域形成的影響。本節(jié)內(nèi)容包括兩部分內(nèi)容,一個(gè)是季風(fēng)水田農(nóng)業(yè),主要分布在亞洲季風(fēng)區(qū);一個(gè)是商品谷物農(nóng)業(yè),主要分布在發(fā)達(dá)國家。教材文字內(nèi)容不多,配備了大量的地圖和景觀圖。因此,在教學(xué)過程中要充分組織學(xué)生查閱地圖,挖掘地理信息,培養(yǎng)分析能力。分析農(nóng)業(yè)區(qū)位因素時(shí),必須從自然因素和社會(huì)經(jīng)濟(jì)因素兩個(gè)方面去分析,找出優(yōu)勢區(qū)位因素來。
1.導(dǎo)入新課:通過視頻“阿根廷的潘帕斯草原”,引起學(xué)生的興趣,進(jìn)而引出新的學(xué)習(xí)內(nèi)容——以畜牧業(yè)為主的農(nóng)業(yè)地域類型。2.新課講授:第一課時(shí),首先通過展示“世界大牧場放牧業(yè)分布圖”,引出對(duì)大牧場放牧業(yè)的初步認(rèn)識(shí),了解其分布范圍;然后通過展示“潘帕斯草原的地形圖”“氣候圖”和“牧牛業(yè)景觀圖”,討論分析大牧場放牧業(yè)形成的區(qū)位條件,并進(jìn)行案例分析,學(xué)習(xí)該種農(nóng)業(yè)的特點(diǎn);最后,理論聯(lián)系實(shí)際,展示:“中國地形圖”“氣候圖”“人口圖”“交通圖”和“內(nèi)蒙古牧區(qū)圖”,分組討論我國內(nèi)蒙古地區(qū)能否采用潘帕斯草原大牧場放牧業(yè)的生產(chǎn)模式。第二課時(shí),首先通過設(shè)問順利從大牧場放牧業(yè)轉(zhuǎn)入乳蓄業(yè),通過講述讓學(xué)生了解乳蓄業(yè)的概念;然后通過展示世界乳畜業(yè)分布圖,了解乳蓄業(yè)主要分布在哪些地區(qū);接著,通過西歐乳蓄業(yè)的案例分析,得到乳蓄業(yè)發(fā)展的區(qū)位因素及其特點(diǎn)。
【教學(xué)目標(biāo)】知識(shí)與技能:了解我國不同等級(jí)城市的劃分,并理論聯(lián)系實(shí)際辨別現(xiàn)實(shí)社會(huì)的城市等級(jí)運(yùn)用有關(guān)原理,說明不同等級(jí)城市服務(wù)范圍的差異。了解城市服務(wù)范圍與地理位置的關(guān)系。掌握不同等級(jí)城市的分布特點(diǎn)了解稱城市六邊形理論,并能用其解釋荷蘭圩田居民點(diǎn)設(shè)置問題過程與方法:通過對(duì)棗強(qiáng)鎮(zhèn)及上海城市等級(jí)演化分布的學(xué)習(xí),掌握不同等級(jí)城市城市服務(wù)范圍與功能以及城市等級(jí)提高的基本條件通過對(duì)德國城市分布案例的學(xué)習(xí),總結(jié)歸納出不同等級(jí)城市分布規(guī)律通過城市六邊形理論的學(xué)習(xí),學(xué)會(huì)分析城市居民點(diǎn)布局等現(xiàn)實(shí)問題情感態(tài)度與價(jià)值觀:通過學(xué)生對(duì)我國不同等級(jí)城市(經(jīng)濟(jì)、人口、交通、服務(wù)種類)等相關(guān)資料的搜集,讓學(xué)生關(guān)心我國基本地理國情,增強(qiáng)熱愛祖國的情感。養(yǎng)成求真、求實(shí)的科學(xué)態(tài)度,提高地理審美情趣。
(設(shè)計(jì)意圖: 通過這兩個(gè)問題探究的形式可以了解學(xué)生對(duì)二、干旱為主的自然特征這一知識(shí)點(diǎn)的掌握情況,隨堂練習(xí)有利于鞏固強(qiáng)化學(xué)生的條例性知識(shí)。)三、荒漠化的成因1、自然因素:干旱、氣候異常2、人為因素:(是荒漠化發(fā)生、發(fā)展的決定因素)自然原因啟發(fā)學(xué)生利用已經(jīng)學(xué)過的知識(shí)(干旱為主的自然特征)和給出的PPT資料來進(jìn)行分析。人為原因以其危害結(jié)果用圖表和圖片的形式展示,使學(xué)生認(rèn)識(shí)到人為因素是導(dǎo)致荒漠化最主要的因素。(設(shè)計(jì)意圖:通過分析自然因素提供學(xué)生分析一區(qū)域環(huán)境建設(shè)的自然基礎(chǔ)條件,而這也是較難的一點(diǎn),再者,通過分析人為原因,是學(xué)生樹立區(qū)域生態(tài)環(huán)境保護(hù)意識(shí)。)四、布置作業(yè):書本課本20—22的活動(dòng)—— 非洲薩赫勒地區(qū)荒漠化的自然、社會(huì)經(jīng)濟(jì)
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
四、說教學(xué)程序(一).溫故知新、導(dǎo)入新課復(fù)習(xí)提問:基因突變導(dǎo)致生物變異的原因是什么?回答:基因突變是基因結(jié)構(gòu)發(fā)生改變,從而使遺傳信息改變,使蛋白質(zhì)結(jié)構(gòu)改變、生物性狀改變,即生物發(fā)生了變異。那么,基因是什么?它和染色體又有何關(guān)系?回答:基因是有遺傳效應(yīng)的DNA片斷,染色體是DNA的載體,基因在染色體上呈線形排列。引出新知:對(duì)于一個(gè)生物體來說,正常情況下,其染色體的結(jié)構(gòu)和數(shù)量都是穩(wěn)定的。但在自然條件或人為因素的影響下,染色體的結(jié)構(gòu)和數(shù)量均會(huì)發(fā)生改變,從而導(dǎo)致生物性狀的改變,這就屬于染色體變異。(二).把握重點(diǎn)、突破難點(diǎn)重點(diǎn)的把握:1、染色體結(jié)構(gòu)的變異播放影片:貓叫綜合征幼兒。讓學(xué)生觀察: 患兒哭聲輕、音調(diào)高,很像貓叫。教師補(bǔ)充: 患兒的征狀---兩眼較低、耳位低下,存在著嚴(yán)重的智力障礙。闡述病因---染色體片段缺失
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
2、講授新課:(35分鐘)通過教材第一目的講解,讓學(xué)生明白,生活和學(xué)習(xí)中有許多蘊(yùn)涵哲學(xué)道理的故事,表明哲學(xué)并不神秘總結(jié)并過渡:生活也離不開哲學(xué),哲學(xué)可以是我正確看待自然、人生、和社會(huì)的發(fā)展,從而指導(dǎo)人們正確的認(rèn)識(shí)和改造世界。整個(gè)過程將伴隨著多媒體影像資料和生生對(duì)話討論以提高學(xué)生的積極性。3、課堂反饋,知識(shí)遷移。最后對(duì)本科課進(jìn)行小結(jié),鞏固重點(diǎn)難點(diǎn),將本課的哲學(xué)知識(shí)遷移到與生活相關(guān)的例子,實(shí)現(xiàn)對(duì)知識(shí)的升華以及學(xué)生的再次創(chuàng)新;可使學(xué)生更深刻地理解重點(diǎn)和難點(diǎn),為下一框?qū)W習(xí)做好準(zhǔn)備。4、板書設(shè)計(jì)我采用直觀板書的方法,對(duì)本課的知識(shí)網(wǎng)絡(luò)在多媒體上進(jìn)行展示。盡可能的簡潔,清晰。使學(xué)生對(duì)知識(shí)框架一目了然,幫助學(xué)生構(gòu)建本課的知識(shí)結(jié)構(gòu)。5、布置作業(yè)我會(huì)留適當(dāng)?shù)淖詼y題及教學(xué)案例讓同學(xué)們做課后練習(xí)和思考,檢驗(yàn)學(xué)生對(duì)本課重點(diǎn)的掌握以及對(duì)難點(diǎn)的理解。并及時(shí)反饋。對(duì)學(xué)生在理解中仍有困難的知識(shí)點(diǎn),我會(huì)在以后的教學(xué)中予以疏導(dǎo)。
第三階段:分班交流論證,歸納整理成文在學(xué)生分組搜集整理資料的基礎(chǔ)之上,我們又以班級(jí)為單位由核心組成員組織資料交流并展開討論,共同歸納整理,集體完成《常熟建設(shè)現(xiàn)代農(nóng)業(yè)科技園區(qū)可行性分析調(diào)查表》中的相關(guān)內(nèi)容,交給各自的指導(dǎo)老師修改。第四階段:分片走進(jìn)園區(qū),體驗(yàn)總結(jié)反思我們本著“熟悉家鄉(xiāng)、就近考察”的原則把全年級(jí)的學(xué)生分成八組,分別到八個(gè)園區(qū)開展實(shí)地調(diào)查。組織他們聽園區(qū)領(lǐng)導(dǎo)或?qū)I(yè)人員介紹園區(qū)的建設(shè)情況和遠(yuǎn)景規(guī)劃,深入田間地頭和溫室大棚參觀園區(qū)生產(chǎn)裝備和農(nóng)民勞動(dòng)場景,開展園區(qū)勞動(dòng)體驗(yàn),與園區(qū)農(nóng)民交談等系列活動(dòng)。要求大家在體驗(yàn)勞動(dòng)、收獲快樂的同時(shí),對(duì)照《常熟現(xiàn)代化農(nóng)業(yè)園區(qū)建設(shè)和發(fā)展情況調(diào)查表》的內(nèi)容逐一展開討論并認(rèn)真填寫。在此基礎(chǔ)上,我們又要求各片的同學(xué)認(rèn)真反思每個(gè)園區(qū)在發(fā)展過程中還有哪些不夠完美的地方和需要改進(jìn)的建議。
在學(xué)生回答的基礎(chǔ)上進(jìn)行歸納小結(jié):發(fā)展城市公共交通? 明確道路分工? 合理規(guī)劃停車場? 減少出行距離? 錯(cuò)開出行高峰? 加大城市道路建設(shè)? 進(jìn)行科學(xué)合理的交通管理,重視智能交通系統(tǒng)的建設(shè)提問:這組同學(xué)在幻燈片中提到城市環(huán)境污染源主要有哪些?城市交通環(huán)境問題除了交通工具的尾氣排放帶來大氣污染外,還會(huì)給城市環(huán)境帶來什么問題?這組同學(xué)基本同意自行車多是加劇南京空氣污染的間接原因,你同意他們的觀點(diǎn)嗎?在學(xué)生回答的基礎(chǔ)上,教師進(jìn)行歸納小結(jié):自行車是一種綠色交通工具,既環(huán)保又經(jīng)濟(jì)。只有當(dāng)它在某些機(jī)動(dòng)車和非機(jī)動(dòng)車不分的地段,影響車輛行駛速度的時(shí)候,它才可能成為加劇空氣污染的間接原因。那么我們針對(duì)交通工具對(duì)環(huán)境造成的影響,除了這組同學(xué)提到的三點(diǎn)解決措施以外,我們還有什么要補(bǔ)充的解決方法嗎?
什么因素可以阻止種群間基因交流呢?由此可引出隔離的概念。學(xué)生初步理解隔離的概念之后,可以安排學(xué)生討論隔離的各種可能的方式,教師歸納出隔離的類型。然后組織學(xué)生閱讀分析教材中的“資料分析”,組織討論“資料分析”中提出的幾個(gè)問題。最后教師應(yīng)強(qiáng)調(diào),一般情況下,地理隔離是生殖隔離的先決條件,生殖隔離一旦形成,原來屬于一個(gè)物種的兩個(gè)種群,就成了兩個(gè)物種。關(guān)于“共同進(jìn)化與生物多樣性的形成”內(nèi)容的教學(xué),可以學(xué)生自學(xué)為基礎(chǔ),教師提出一些具有啟發(fā)性的問題,師生共同歸納總結(jié)的方式推進(jìn)教學(xué)過程。使學(xué)生理解共同進(jìn)化的含義,無機(jī)環(huán)境的變化、無機(jī)環(huán)境的復(fù)雜化和多樣化、有性生殖的出現(xiàn)和生態(tài)系統(tǒng)結(jié)構(gòu)的復(fù)雜化和多樣化對(duì)生物多樣性形成的作用。最后,組織學(xué)生討論生物進(jìn)化理論在發(fā)展。
一,說教材1. 教材的地位和作用本章課程的核心是介紹現(xiàn)代生物進(jìn)化理論.生物進(jìn)化理論的發(fā)展和其他科學(xué)理論的發(fā)展一樣,不是簡單的新理論對(duì)舊理論的否定和排斥,而是新理論對(duì)舊理論的修正,深入和擴(kuò)展.從拉馬克的進(jìn)化學(xué)說到達(dá)爾文的自然選擇學(xué)說,以及現(xiàn)代進(jìn)化理論的由來,大體都走過了這樣的軌跡.這些應(yīng)該成為處理本節(jié)教學(xué)內(nèi)容的基本脈絡(luò).本節(jié)內(nèi)容包括:拉馬克的進(jìn)化學(xué)說,達(dá)爾文的自然選擇學(xué)說和達(dá)爾文以后生物進(jìn)化理論的發(fā)展,其中重點(diǎn)是達(dá)爾文的自然選擇學(xué)說.生物進(jìn)化論不僅是生物學(xué)中具有重要地位的基礎(chǔ)理論,也是對(duì)人們的自然觀和世界觀有著重要影響的理論.學(xué)生通過本章內(nèi)容的學(xué)習(xí),不僅可以了解生物進(jìn)化理論在達(dá)爾文之后的發(fā)展,進(jìn)一步樹立生物進(jìn)化的觀點(diǎn)和辯證唯物主義觀點(diǎn),而且能夠通過學(xué)習(xí)進(jìn)化理論的發(fā)展過程,加深對(duì)科學(xué)本質(zhì)的理解和感悟.