提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

中班科學教案:多彩的肥皂

  • 【高教版】中職數(shù)學拓展模塊:3.5《正態(tài)分布》教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:3.5《正態(tài)分布》教學設(shè)計

    教學目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質(zhì)。教學重點:正態(tài)分布的密度函數(shù)和分布函數(shù)。教學難點:正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質(zhì)。教學學時:2學時教學過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計算積分。首先計算。因為(利用極坐標計算)所以。記,則利用定積分的換元法有因為,所以它可以作為某個連續(xù)隨機變量的概率密度函數(shù)。定義 如果連續(xù)隨機變量的概率密度為則稱隨機變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。

  • 【高教版】中職數(shù)學拓展模塊:2.2《雙曲線》教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:2.2《雙曲線》教學設(shè)計

    教學準備 1. 教學目標 知識與技能掌握雙曲線的定義,掌握雙曲線的四種標準方程形式及其對應(yīng)的焦點、準線.過程與方法掌握對雙曲線標準方程的推導,進一步理解求曲線方程的方法——坐標法.通過本節(jié)課的學習,提高學生觀察、類比、分析和概括的能力.情感、態(tài)度與價值觀通過本節(jié)的學習,體驗研究解析幾何的基本思想,感受圓錐曲線在刻畫現(xiàn)實和解決實際問題中的作用,進一步體會數(shù)形結(jié)合的思想.2. 教學重點/難點 教學重點雙曲線的定義及焦點及雙曲線標準方程.教學難點在推導雙曲線標準方程的過程中,如何選擇適當?shù)淖鴺讼担?3. 教學用具 多媒體4. 標簽

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:8.4《圓》教學設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:8.4《圓》教學設(shè)計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 8.4 圓(二) *創(chuàng)設(shè)情境 興趣導入 【知識回顧】 我們知道,平面內(nèi)直線與圓的位置關(guān)系有三種(如圖8-21): (1)相離:無交點; (2)相切:僅有一個交點; (3)相交:有兩個交點. 并且知道,直線與圓的位置關(guān)系,可以由圓心到直線的距離d與半徑r的關(guān)系來判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說明 質(zhì)疑 引導 分析 了解 思考 思考 帶領(lǐng) 學生 分析 啟發(fā) 學生思考 0 15*動腦思考 探索新知 【新知識】 設(shè)圓的標準方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關(guān)系. 講解 說明 引領(lǐng) 分析 思考 理解 帶領(lǐng) 學生 分析 30*鞏固知識 典型例題 【知識鞏固】 例6 判斷下列各直線與圓的位置關(guān)系: ⑴直線, 圓; ⑵直線,圓. 解?、?由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標準方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關(guān)系的其他方法? *例7 過點作圓的切線,試求切線方程. 分析 求切線方程的關(guān)鍵是求出切線的斜率.可以利用原點到切線的距離等于半徑的條件來確定. 解 設(shè)所求切線的斜率為,則切線方程為 , 即 . 圓的標準方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問題中有著廣泛的應(yīng)用. 【想一想】 能否利用“切線垂直于過切點的半徑”的幾何性質(zhì)求出切線方程? 說明 強調(diào) 引領(lǐng) 講解 說明 引領(lǐng) 講解 說明 觀察 思考 主動 求解 思考 主動 求解 通過例題進一步領(lǐng)會 注意 觀察 學生 是否 理解 知識 點 50

  • 【高教版】中職數(shù)學拓展模塊:2.1《橢圓》優(yōu)秀教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:2.1《橢圓》優(yōu)秀教學設(shè)計

    本人所教的兩個班級學生普遍存在著數(shù)學科基礎(chǔ)知識較為薄弱,計算能力較差,綜合能力不強,對數(shù)學學習有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識到自己的不足,對數(shù)學課的學習興趣高,積極性強。 學生在學習交往上表現(xiàn)為個別化學習,課堂上較為依賴老師的引導。學生的群體性小組交流能力與協(xié)同討論學習的能力不強,對學習資源和知識信息的獲取、加工、處理和綜合的能力較低。在教學中盡量分析細致,減少跨度較大的環(huán)節(jié),對重要的推導過程采用板書方式逐步進行,力求讓絕大多數(shù)學生接受。 1.理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據(jù)條件求橢圓的標準方程,會根據(jù)橢圓的標準方程求焦點坐標. 2.通過橢圓圖形的研究和標準方程的討論,使學生掌握橢圓的幾何性質(zhì),能正確地畫出橢圓的圖形,并了解橢圓的一些實際應(yīng)用。 1.讓學生經(jīng)歷橢圓標準方程的推導過程,進一步掌握求曲線方程的一般方法,體會數(shù)形結(jié)合等數(shù)學思想;培養(yǎng)學生運用類比、聯(lián)想等方法提出問題. 2.培養(yǎng)學生運用數(shù)形結(jié)合的思想,進一步掌握利用方程研究曲線的基本方法,通過與橢圓幾何性質(zhì)的對比來提高學生聯(lián)想、類比、歸納的能力,解決一些實際問題。 1.通過具體的情境感知研究橢圓標準方程的必要性和實際意義;體會數(shù)學的對稱美、簡潔美,培養(yǎng)學生的審美情趣,形成學習數(shù)學知識的積極態(tài)度. 2.進一步理解并掌握代數(shù)知識在解析幾何運算中的作用,提高解方程組和計算能力,通過“數(shù)”研究“形”,說明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過“數(shù)”的變化研究“形”的本質(zhì)。幫助學生建立勇于探索創(chuàng)新的精神和克服困難的信心。

  • 人教版高中數(shù)學選修3排列與排列數(shù)教學設(shè)計

    人教版高中數(shù)學選修3排列與排列數(shù)教學設(shè)計

    4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個不同元素中任選4個元素的排列問題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個數(shù)字組成沒有重復數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個?能被5整除的有多少個?(2)這些四位數(shù)中大于6 500的有多少個?解:(1)偶數(shù)的個位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個);能被5整除的數(shù)個位必須是5,故有A_6^3=120(個).(2)最高位上是7時大于6 500,有A_6^3種,最高位上是6時,百位上只能是7或5,故有2×A_5^2種.由分類加法計數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個).

  • 人教版高中數(shù)學選修3超幾何分布教學設(shè)計

    人教版高中數(shù)學選修3超幾何分布教學設(shè)計

    探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機變量X的分布列.(1):采用有放回抽樣,隨機變量X服從二項分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨立,此時X服從二項分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機變量X服從超幾何分布.

  • 人教版高中數(shù)學選修3二項式定理教學設(shè)計

    人教版高中數(shù)學選修3二項式定理教學設(shè)計

    二項式定理形式上的特點(1)二項展開式有n+1項,而不是n項.(2)二項式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項展開式中某一項的系數(shù)不一定相等.(3)二項展開式中的二項式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項起,次數(shù)由n次逐項減少1次直到0次,同時字母b按升冪排列,次數(shù)由0次逐項增加1次直到n次.1.判斷(正確的打“√”,錯誤的打“×”)(1)(a+b)n展開式中共有n項. ( )(2)在公式中,交換a,b的順序?qū)Ω黜棝]有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項. ( )(4)(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)相同. ( )[解析] (1)× 因為(a+b)n展開式中共有n+1項.(2)× 因為二項式的第k+1項Cknan-kbk和(b+a)n的展開式的第k+1項Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因為Cknan-kbk是(a+b)n展開式中的第k+1項.(4)√ 因為(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中數(shù)學選修3全概率公式教學設(shè)計

    人教版高中數(shù)學選修3全概率公式教學設(shè)計

    2.某小組有20名射手,其中1,2,3,4級射手分別為2,6,9,3名.又若選1,2,3,4級射手參加比賽,則在比賽中射中目標的概率分別為0.85,0.64,0.45,0.32,今隨機選一人參加比賽,則該小組比賽中射中目標的概率為________. 【解析】設(shè)B表示“該小組比賽中射中目標”,Ai(i=1,2,3,4)表示“選i級射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為________. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個廠的產(chǎn)品次品率分別為2% , 1%, 1%,問從這批產(chǎn)品中任取一件是次品的概率是多少?

  • 人教版高中數(shù)學選修3條件概率教學設(shè)計

    人教版高中數(shù)學選修3條件概率教學設(shè)計

    (2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機地抽出6道題,若考生至少答對其中的4道題即可通過;若至少答對其中5道題就獲得優(yōu)秀.已知某考生能答對其中10道題,并且知道他在這次考試中已經(jīng)通過,求他獲得優(yōu)秀成績的概率.解:設(shè)事件A為“該考生6道題全答對”,事件B為“該考生答對了其中5道題而另一道答錯”,事件C為“該考生答對了其中4道題而另2道題答錯”,事件D為“該考生在這次考試中通過”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.

  • 人教版高中數(shù)學選修3正態(tài)分布教學設(shè)計

    人教版高中數(shù)學選修3正態(tài)分布教學設(shè)計

    3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因為月收入服從正態(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學考試中,某班學生的分數(shù)X~N(110,202),且知試卷滿分150分,這個班的學生共54人,求這個班在這次數(shù)學考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.

  • 人教版高中數(shù)學選修3組合與組合數(shù)教學設(shè)計

    人教版高中數(shù)學選修3組合與組合數(shù)教學設(shè)計

    解析:因為減法和除法運算中交換兩個數(shù)的位置對計算結(jié)果有影響,所以屬于組合的有2個.答案:B2.若A_n^2=3C_(n"-" 1)^2,則n的值為( )A.4 B.5 C.6 D.7 解析:因為A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故選C.答案:C 3.若集合A={a1,a2,a3,a4,a5},則集合A的子集中含有4個元素的子集共有 個. 解析:滿足要求的子集中含有4個元素,由集合中元素的無序性,知其子集個數(shù)為C_5^4=5.答案:54.平面內(nèi)有12個點,其中有4個點共線,此外再無任何3點共線,以這些點為頂點,可得多少個不同的三角形?解:(方法一)我們把從共線的4個點中取點的多少作為分類的標準:第1類,共線的4個點中有2個點作為三角形的頂點,共有C_4^2·C_8^1=48(個)不同的三角形;第2類,共線的4個點中有1個點作為三角形的頂點,共有C_4^1·C_8^2=112(個)不同的三角形;第3類,共線的4個點中沒有點作為三角形的頂點,共有C_8^3=56(個)不同的三角形.由分類加法計數(shù)原理,不同的三角形共有48+112+56=216(個).(方法二 間接法)C_12^3-C_4^3=220-4=216(個).

  • 高中思想政治教案

    高中思想政治教案

    一、考點導航  1.了解商品的含義及基本屬性  2.理解貨幣的產(chǎn)生與本質(zhì)  3.理解貨幣的基本職能  4.了解紙幣的含義,理解紙幣發(fā)行規(guī)律及通貨膨脹與通貨緊縮  5.了解信用卡的含義、功能及優(yōu)點  6.了解外匯與匯率  7.樹立正確的金錢觀

  • 初中英語說課教案

    初中英語說課教案

    (二) 教學目標   依據(jù)并結(jié)合新課程標準提出的基礎(chǔ)教育階段英語課程的總體目標和具體要求,我將本課教學目標設(shè)計如下:  知識目標:   讓學生掌握其中的重要詞匯mind, turn down, not at all等和句式would you mind doing sth? 并能讓學生掌握如何運用所學句式提出禮貌請求以及禮貌的向他人道歉。

  • 《在中亞細亞草原上》教案

    《在中亞細亞草原上》教案

    教學過程:一、引入首先我們來欣賞一幅油畫,它的名字就叫《在中亞細亞草原上》(出示油畫)??赡芡瑢W們會覺得它不論時間與空間上都離我們很遠,那么我們有沒有辦法讓它離欣賞者很近,甚至有身臨其境的感覺呢?(提示學生可以從人的視覺與聽覺入手)那我們就來給它配樂,在配樂之前我們必須對油畫的內(nèi)容有些了解(出示文字),根據(jù)文字提示我們想想它可能出現(xiàn)哪些音樂或聲音?設(shè)計意圖:從畫面進入讓學生對標題音樂(交響音畫)的標題來源有暗示作用,為下節(jié)課對標題音樂的總結(jié)打下埋伏。二、分段欣賞接下來我們來看看作曲家是如何做的,欣賞以下片段音樂做出連線并說出共有幾個主題?(初聽)A俄國衛(wèi)隊 音樂1(主題1獨奏)B商隊漸漸遠去 音樂2(對比復調(diào))C安然無慮的當?shù)厣剃? 音樂3(主題2)(教師簡單介紹英國管)D二者關(guān)系融洽 音樂4(主題1齊奏)E飄過來的俄國曲調(diào) 音樂5(主題1漸漫)(教師簡單介紹單簧管)問:共有幾個主題?1、為何ABE他們同為一主提而表現(xiàn)的音樂內(nèi)涵卻各不相同?(A與E是力度上的變化,而A與B是節(jié)奏與力度的變化。)2、你是從哪方面感受出C的安然無慮?(旋律與音色上,可以從英國管是地特定情景下才用的樂器入手進行引導。)3、二者關(guān)系融洽你是從哪聽出來的呢?(從旋律的層次上,他們用的是對比復調(diào),進行得非常和諧。)

  • 《中國人民解放軍軍歌》教案

    《中國人民解放軍軍歌》教案

    教學過程:一、組織教學學生跟隨著《軍隊進行曲》步入音樂教室,并伴隨著音樂原地踏步,師生問好。(情景教學)二、導入(為新課鋪墊)1、根據(jù)課前所放的《軍隊進行曲》,提問同學的步伐整齊是因為什么原因?(踩著音樂的節(jié)拍行進)2、說說《軍隊進行曲》的節(jié)拍是怎樣的?(二拍子,強拍在第一拍上)3、伴隨著音樂走進教室時,你聽到音樂后的感受是什么?(節(jié)奏感強、雄壯有力、激昂)4、把剛才分析的《軍隊進行曲》的特點合在一起,就是進行曲的特點,導出進行曲。5、眾多進行曲中,你所熟悉的進行曲都有哪些?(《中國人民解放軍軍歌》、《婚禮進行曲》、《葬禮進行曲》等)三、新授1、放一段帶有閱兵式畫面的錄像,引出《中國人民解放軍軍歌》。2、學生介紹作者鄭律成。3、欣賞《中國人民解放軍軍歌》。4、賞析《中國人民解放軍軍歌》。①欣賞此曲后的感受。(振奮人心)②欣賞后給你留下最深刻的是哪段音樂(最容易哼唱的部分)?(開頭:向前、向前、向前!我們的隊伍向太陽……)③分析開頭的旋律:同音重復(只有一個音ⅰ組成),不加任何節(jié)奏的演唱和加入附點和切分節(jié)奏的演唱,比較二者的區(qū)別,感受加上附點和切分節(jié)奏后給人的感覺是什么?(具有號召性節(jié)奏鏗鏘,振奮人心)

  • 貴州大學引進人才科研項目合同書

    貴州大學引進人才科研項目合同書

    1、預期研究成果需填寫具體成果形式。其成果須標注“貴州大學引進人才科研基金資助”。2、項目經(jīng)費必須嚴格按照項目預算支付,符合財務(wù)規(guī)定的制度。3、項目研究工作時間為2-3年。4、本合同一式三份,學校科研管理部門、人事部門和項目負責人各持一份。5、可根據(jù)填寫內(nèi)容的需要適當增加表格頁數(shù)。簡 表研究項目名稱 起 止 年 月 資助金額 萬元項目負責人 姓 名 性別 年 齡 職務(wù)(職稱) 學位 學 科 聯(lián)系電話 手機 成果形式(專著1部或省級以上期刊發(fā)表論文2篇) (發(fā)表的論著應(yīng)署名本項目名稱及編號)項 目 研 究 組 成 員姓名 性別 年齡 職稱 專業(yè) 所在部門 項目分工 簽字

  • 大班社會教案:參觀民俗風情園活動方案設(shè)計

    大班社會教案:參觀民俗風情園活動方案設(shè)計

    1.了解少數(shù)民族人民的民居、服飾、工藝品、民族活動、風俗習慣、文化藝術(shù)等,培養(yǎng)幼兒熱愛少數(shù)民族的情感。 2.知道我們的祖國是多民族國家,各族人民勤勞、智慧、能歌善舞。 3、增進家園合作,密切家園聯(lián)系。 活動準備: 1. 選好參觀景點、訂好門票。 2. 請家長于10月28日上午9:00來幼兒園。 3. 食品和水(一人一份)。 4. 講清楚活動要求、規(guī)則以及需要家長協(xié)助的工作。

  • 三角形內(nèi)角和定理教案教學設(shè)計

    三角形內(nèi)角和定理教案教學設(shè)計

    活動內(nèi)容:① 已知,如圖,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求證:AD∥BC分析:要證明AD∥BC,只需證明“同位角相等”,即需證明∠DAE=∠B.證明:∵∠EAC=∠B+∠C(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分線的定義)∴∠DAE=∠B(等量代換)∴AD∥BC(同位角相等,兩直線平行)想一想,還有沒有其他的證明方法呢?這個題還可以用“內(nèi)錯角相等,兩直線平行”來證.

  • 一元一次方程教案教學設(shè)計

    一元一次方程教案教學設(shè)計

    1、方程的定義1)像這種用等號“=”來表示相等關(guān)系的式子,叫等式。(老師給出定義。)2)請大家觀察左邊的這些式子,看看它們有什么共同的特征?(老師提出問題。)3)列方程時,要先設(shè)字母表示未知數(shù),然后根據(jù)問題中的相等關(guān)系,寫出含有未知數(shù)的等式叫做方程。(學生思考后,老師給出新學內(nèi)容方程的定義。)4)判斷方程的兩個關(guān)鍵要素: ①有未知數(shù) ②是等式(老師提問,并給出。)

  • 簡單隨機抽樣教案教學設(shè)計

    簡單隨機抽樣教案教學設(shè)計

    1、交流與發(fā)現(xiàn)為了了解本校學生暑假期間參加體育活動的情況,學校準備抽取一部分學生進行調(diào)查,你認為按下面的調(diào)查方法取得的結(jié)果能反映全校學生的一般情況嗎?如果不能反映,應(yīng)當如何改進調(diào)查方法?方法1:調(diào)查學校田徑隊的30名同學;方法2:調(diào)查每個班的男同學;方法3:從每班抽取1名同學進行調(diào)查;方法4:選取每個班級中的一半學生進行調(diào)查.通過前面的活動,學生親身經(jīng)歷了一次數(shù)據(jù)的調(diào)查過程,并通過對所得數(shù)據(jù)的計算和分析,了解了自己在家干家務(wù)活的時間所處的位置和水平,在調(diào)查過程中體會到調(diào)查方便有效的重要性.接下來,就能很好地解決交流與發(fā)現(xiàn)中的問題.師生共同討論完成交流與發(fā)現(xiàn).

上一頁123...275276277278279280281282283284285286下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!