1、重點(diǎn):如何處理主次矛盾、矛盾主次方面的關(guān)系,具體問(wèn)題具體分析2、難點(diǎn):弄清主次矛盾、矛盾主次方面的含義四、學(xué)情分析高二學(xué)生具備了一定的抽象思維和綜合分析的能力,但實(shí)踐能力普遍較弱。本框所學(xué)知識(shí)理論性較強(qiáng),主次矛盾和矛盾的主次方面這兩個(gè)概念極易混淆,學(xué)生較難理解。而且本框內(nèi)容屬方法論要求,需要學(xué)生將理論與實(shí)踐緊密結(jié)合,學(xué)生在運(yùn)用理論分析實(shí)際問(wèn)題上還比較薄弱。五、教學(xué)方法:1、探究性學(xué)習(xí)法。組織學(xué)生課后分小組進(jìn)行探究性學(xué)習(xí)。在探究性學(xué)習(xí)中進(jìn)行:“自主學(xué)習(xí)”、“合作學(xué)習(xí)”。讓學(xué)生進(jìn)行自主學(xué)習(xí)的目的是:讓學(xué)生作學(xué)習(xí)的主人,“愛(ài)學(xué)、樂(lè)學(xué)”,并培養(yǎng)學(xué)生終身學(xué)習(xí)的能力;讓學(xué)生進(jìn)行合作學(xué)習(xí)的目的是:在小組分工合作中,在生生互動(dòng)( 學(xué)生與學(xué)生互動(dòng))中,促使學(xué)生克服“以自我為中心,合作精神差,實(shí)踐能力弱“等不足,培養(yǎng)綜合素質(zhì)。2、理論聯(lián)系實(shí)際法。關(guān)注生活,理論聯(lián)系實(shí)際,學(xué)以致用。
1、(1)黃筌為什么無(wú)法改動(dòng)吳道子的畫?(2)如果讓你改動(dòng)這幅畫,你會(huì)怎樣做?談?wù)勀愕目捶ā!筇骄刻崾荆?1)吳道子的畫是一個(gè)整體,黃筌之所以無(wú)法改動(dòng)此畫就是因?yàn)楫嬛惺持笒豆硌凼钦嫷囊徊糠?,它的存在處于畫的被支配地位,只能服從和服?wù)于整幅畫。一旦改動(dòng),則失去了其整體的功能。(2)不改。因?yàn)檎w與部分又是辯證統(tǒng)一的。2、統(tǒng)籌城鄉(xiāng)經(jīng)濟(jì)社會(huì)發(fā)展,要跨出傳統(tǒng)的就農(nóng)業(yè)論農(nóng)業(yè)、就農(nóng)村論農(nóng)村的局限,站在國(guó)民經(jīng)濟(jì)發(fā)展的全局角度,建設(shè)社會(huì)主義新農(nóng)村。這是現(xiàn)階段解決“三農(nóng)”問(wèn)題的基本立場(chǎng)和思維方法。這一基本立場(chǎng)和思維方法體現(xiàn)的唯物辯證法道理( )A.要注意系統(tǒng)內(nèi)部機(jī)構(gòu)的優(yōu)化B.要著眼于事物的整體性C.要堅(jiān)持主觀和客觀的統(tǒng)一 D.要重視部分的作用,搞好局部解析:材料強(qiáng)調(diào)的是整體的重要性,要求站在國(guó)民經(jīng)濟(jì)發(fā)展的全局角度,統(tǒng)籌城鄉(xiāng)經(jīng)濟(jì)社會(huì)發(fā)展。A、C、D三個(gè)選項(xiàng)不符合題意。正確答案為B。
新知探究:向量的減法運(yùn)算定義問(wèn)題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來(lái)進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問(wèn)題六:根據(jù)問(wèn)題五,思考一下向量減法的幾何意義是什么?問(wèn)題七:非零共線向量怎樣做減法運(yùn)算? 問(wèn)題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
對(duì)于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實(shí)際問(wèn)題中,有時(shí)我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績(jī)是否“兩極分化”則需要考察這個(gè)班數(shù)學(xué)成績(jī)的方差。我們還常常希望直接通過(guò)數(shù)字來(lái)反映隨機(jī)變量的某個(gè)方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動(dòng)員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時(shí),頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個(gè)平均值的大小可以反映甲運(yùn)動(dòng)員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.
3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬(wàn)元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤(rùn)Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤(rùn)并且愿意為了高利潤(rùn)承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.
高斯(Gauss,1777-1855),德國(guó)數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測(cè)量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過(guò)杰出貢獻(xiàn). 問(wèn)題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實(shí)際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項(xiàng)的和問(wèn)題.等差數(shù)列中,下標(biāo)和相等的兩項(xiàng)和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問(wèn)題2: 你能用上述方法計(jì)算1+2+3+… +101嗎?問(wèn)題3: 你能計(jì)算1+2+3+… +n嗎?需要對(duì)項(xiàng)數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時(shí), S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時(shí), n-1為偶數(shù)
新知探究國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問(wèn)他想要什么.發(fā)明者說(shuō):“請(qǐng)?jiān)谄灞P的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國(guó)王覺(jué)得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國(guó)王是否能實(shí)現(xiàn)他的諾言.問(wèn)題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請(qǐng)判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問(wèn)題2:請(qǐng)將發(fā)明者的要求表述成數(shù)學(xué)問(wèn)題.
二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過(guò)程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無(wú)限增大時(shí),無(wú)限趨近于所有正方形的面積和
課前小測(cè)1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時(shí),n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個(gè)報(bào)告廳,要求容納800個(gè)座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個(gè)座位. 問(wèn)第1排應(yīng)安排多少個(gè)座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。
◇本框題小結(jié):◇3個(gè)體現(xiàn):即人民代表大會(huì)制度是我國(guó)的根本政治制度的3個(gè)體現(xiàn)(1)、人民代表大會(huì)制度決定著國(guó)家的其他各種具體制度;(2)、人民代表大會(huì)制度是中國(guó)人民當(dāng)家作主的最高形式和重要途徑;(3)、人民代表大會(huì)制度是中國(guó)社會(huì)主義政治文明的重要制度載體?!?個(gè)表現(xiàn):即民主集中制確保國(guó)家權(quán)力協(xié)調(diào)高效的表現(xiàn):(1)、從人民代表大會(huì)和人民的關(guān)系來(lái)看①各級(jí)人民代表受選民和原選舉單位的監(jiān)督,選民或選舉單位有權(quán)罷免自己選舉出的代表;②各級(jí)人民代表大會(huì)代表人民統(tǒng)一行使國(guó)家權(quán)力(2)、從人民代表大會(huì)與其他國(guó)家機(jī)關(guān)的關(guān)系來(lái)看①其他國(guó)家機(jī)關(guān)都由人民代表大會(huì)產(chǎn)生,對(duì)它負(fù)責(zé)、受它監(jiān)督;②在人民代表大會(huì)統(tǒng)一行使國(guó)家權(quán)力的前提下,其他國(guó)家機(jī)關(guān)依照法定分工依法行使各自的職權(quán)。(3)、從中央和地方的關(guān)系來(lái)看①地方必須服從中央;②在保證中央統(tǒng)一領(lǐng)導(dǎo)的同時(shí),必須考慮地方特殊利益,充分發(fā)揮地方的主動(dòng)性和積極性。
二是中國(guó)人口多、資源相對(duì)不足日益成為制約發(fā)展的突出矛盾。我國(guó)人均水資源擁有量?jī)H為世界平均水平的1/4,600多個(gè)城市中,400多個(gè)缺水,其中110個(gè)嚴(yán)重缺水。我國(guó)人均耕地?fù)碛辛坎坏绞澜缙骄降?0%。石油、天然氣、銅和鋁等重要礦產(chǎn)資源的人均儲(chǔ)量分別只占世界人均水平的8.3%、4.1%、25.5%、9.7%。三是我國(guó)這20年來(lái)經(jīng)濟(jì)快速發(fā)展,能源浪費(fèi)大、環(huán)境破壞嚴(yán)重等問(wèn)題日益凸顯,人與自然的矛盾從未像今天這樣突出。無(wú)序、無(wú)度的消耗,迅速透支我們寶貴的資源。以下是來(lái)自國(guó)家環(huán)??偩值囊唤M沉甸甸的數(shù)據(jù)?!獜纳鲜兰o(jì)50到90年代,每年沙化土地?cái)U(kuò)大面積從560平方公里增加到2460平方公里,我國(guó)18個(gè)省的471個(gè)縣、近4億人口的耕地和家園正受到不同程度的荒漠化威脅?!?952年我國(guó)人均耕地2.82畝,2003年人均耕地減少到1.43畝,在各地轟轟烈烈的“圈地”熱潮中僅最近7年全國(guó)耕地就減少了1億畝,被占耕地大量閑置。
a矛盾的同一性是矛盾雙方相互吸引、相互聯(lián)結(jié)的屬性和趨勢(shì)。它有兩方面的含義:一是矛盾雙方相互依賴,一方的存在以另一方的存在為前提,雙方共處于一個(gè)統(tǒng)一體中;同一事物都有對(duì)立面和統(tǒng)一面兩個(gè)方面,一方的存在以另一方為條件,彼此誰(shuí)都離不開誰(shuí)(形影想隨、一個(gè)巴掌拍不響、不是冤家不聚頭)。【舉例】P67漫畫:他敢剪嗎?懸掛在山崖上的兩個(gè)人構(gòu)成一種動(dòng)態(tài)的平衡?!九e例】磁鐵(S極和N極);沒(méi)有上就沒(méi)有下、沒(méi)有香就沒(méi)有臭、沒(méi)有福就無(wú)所謂禍;【舉例】父子關(guān)系(父親之所以是父親,因?yàn)橛袃鹤?,兒子之所以是兒子,因?yàn)橛懈赣H);師生關(guān)系;二是矛盾雙方相互貫通,即相互滲透、相互包含,在一定條件下可以相互轉(zhuǎn)化。 【相關(guān)銜接】P68生物變性現(xiàn)象,雌雄轉(zhuǎn)化現(xiàn)象【舉例】生產(chǎn)與消費(fèi)具有直接統(tǒng)一性
探究活動(dòng)8(教材第72頁(yè)):“結(jié)合生活事例,談?wù)勀阍诿鎸?duì)復(fù)雜事物時(shí)是如何分析和解決矛盾的?”這一探究活動(dòng)是在學(xué)生還不了解主次矛盾的原理時(shí),讓他們回憶自己在生活中有沒(méi)有遇到過(guò)面對(duì)許多矛盾時(shí)是如何解決的經(jīng)歷。比如,每天面對(duì)很多作業(yè),先做哪門課作業(yè)后做哪門作業(yè),你是如何考慮的?在學(xué)校面對(duì)學(xué)習(xí)、體育運(yùn)動(dòng)和社會(huì)工作,你是怎么安排的?在生活中,你遇到這樣的情況都是怎樣解決的?通過(guò)探究活動(dòng),使學(xué)生弄清主次矛盾的原理,學(xué)會(huì)用矛盾分析法分析問(wèn)題。探究活動(dòng)9(教材第73頁(yè)):“你在生活中是如何分析具體問(wèn)題的?”這一探究活動(dòng),強(qiáng)調(diào)的是“你”在生活中是如何運(yùn)用分析法分析具體問(wèn)題的,要緊緊圍繞學(xué)生這一中心,首先強(qiáng)調(diào)具體問(wèn)題具體分析的方法非常重要,這是馬克思主義的一個(gè)原則,是馬克思主義的活的靈魂。引導(dǎo)學(xué)生主動(dòng)運(yùn)用這種分析方法分析看待自己,分析看待社會(huì)??梢越M織學(xué)生進(jìn)行討論、交流,還可以讓學(xué)生撰寫小論文,寫出自己運(yùn)用這種分析方法分析了哪些具體問(wèn)題,有哪些感受。
3、運(yùn)用目標(biāo)(1)運(yùn)用所學(xué)知識(shí)說(shuō)明世界真正的統(tǒng)一性就在于它的物質(zhì)性(2)運(yùn)用所學(xué)知識(shí)及相關(guān)哲學(xué)原理,分析作為物質(zhì)觀發(fā)展的第一個(gè)基本階段,古代樸素唯物主義物質(zhì)觀的局限性,從分析論證中加深對(duì)辯證唯物主義物質(zhì)觀的科學(xué)性的理解(3)列舉實(shí)際事例,結(jié)合相關(guān)哲學(xué)原理,討論如果只承認(rèn)運(yùn)動(dòng)的絕對(duì)性,而否認(rèn)靜止的相對(duì)性會(huì)導(dǎo)致的結(jié)果,分析馬克思主義哲學(xué)為什么要堅(jiān)持絕對(duì)運(yùn)動(dòng)與相對(duì)靜止的統(tǒng)一(4)世界是有規(guī)律的,規(guī)律是普遍的。列舉實(shí)際事例,分析任何事物都有其內(nèi)在的規(guī)律性,規(guī)律是客觀的,是不以人的意志為轉(zhuǎn)移的,但是人在規(guī)律目前并不是無(wú)能為力的二、能力目標(biāo)1、培養(yǎng)學(xué)生自覺(jué)運(yùn)用馬克思主義的物質(zhì)觀分析宇宙間一切事物及現(xiàn)象的能力2、鍛煉學(xué)生理論聯(lián)系實(shí)際的能力,培養(yǎng)學(xué)生正確認(rèn)識(shí)世界的本質(zhì),并能夠自覺(jué)地按照客觀規(guī)律辦事的能力
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過(guò)點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說(shuō)明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過(guò)交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說(shuō)明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.