1、導(dǎo)入:青春之美,彌足珍貴,青春的價值又各不相同,如果革命之志是毛澤東青春的美好,那蓬勃的創(chuàng)造力就是郭沫若的青春之歌,如果奉獻(xiàn)與犧牲是聞一多青春的價值,那么自由就是雪萊青春的底色,我們前兩節(jié)課遨游在詩歌的天空,那么我們這節(jié)課我們要來到小說的園地,看看青春在這片小說的沃土里展現(xiàn)怎樣的顏色。目的:創(chuàng)設(shè)詩意,進(jìn)入情境,延繼單元主題,引出學(xué)習(xí)內(nèi)容2、學(xué)習(xí)任務(wù)一:預(yù)習(xí)檢查,概括情節(jié)目的:檢查預(yù)習(xí)成果,落實整體感知把握主旨的課前學(xué)習(xí)任務(wù)。3、學(xué)習(xí)任務(wù)二:情境探究:品人物悟青春之美假設(shè)我校文學(xué)社正在舉辦“文學(xué)中最美的青春人物”評選活動,讓同學(xué)在《百合花》與《哦,香雪》中推選出最能體現(xiàn)青春美好的人物,還需要附上簡短的推薦理由以便評委組評議。誰最美?大家為此爭論不休,如果你也參與推薦,那你覺得誰才是最美的青春人物?你會為他寫上怎樣的推薦理由?(思考提示:依據(jù)表格內(nèi)容思考并完成表格,小組內(nèi)交流3分鐘,推選代表回答)
1. 厘清全文的線索、情節(jié),體會小說結(jié)構(gòu)嚴(yán)謹(jǐn)、清新俊逸的寫作風(fēng)格。2. 分析通訊員、新媳婦的人物形象,通過品味生動的細(xì)節(jié)來感知人物身上洋溢的人性美、青春美。3.通過自主、合作、探究,從不同角度和層面發(fā)掘“百合花”這一主題的獨特意蘊。4.通過把握小說人性美、青春美的主題,引導(dǎo)學(xué)生提升自身的精神品質(zhì)和道德情操。教學(xué)重點是:通訊員及新媳婦的性格特征分析,小說如何通過細(xì)節(jié)描寫來塑造人物性格。教學(xué)難點是:從不同角度和層面發(fā)掘“百合花”這一主題的獨特意蘊。【教學(xué)方法】本文篇幅較長,但我們決定用一個課時來完成教學(xué)任務(wù),課前讓學(xué)生充分預(yù)習(xí)文本,自己搜集有關(guān)“百合花”的知識資料,自主梳理文章的故事情節(jié),自主歸納人物的形象、性格特點。課堂上采用情景激趣法、啟發(fā)誘導(dǎo)法、合作探究法等教學(xué)方法來引導(dǎo)學(xué)生學(xué)習(xí)探究,培養(yǎng)學(xué)生的文學(xué)鑒賞能力。
學(xué)生借助對對聯(lián)的賞析,回味杜甫窮年漂泊的一生,體會杜甫作為一個深受儒家思想影響的讀書人,忠君念闕,心系蒼生的偉大情懷。(這一設(shè)計理念源于孟子所云:“誦其文,讀其詩,不知其人,可乎?是以論其世也?!敝苏撌朗氰b賞詩歌的第一步 )(二)研讀課文1、初讀,朗讀吟誦,感知韻律美。要求學(xué)生讀準(zhǔn)字音,讀懂句意,體會律詩的節(jié)奏、押韻的順暢之美。2、再讀,披詞入情,感受感情美。讓學(xué)生用一個字概括這首詩的情感內(nèi)容。(此教學(xué)設(shè)計是從新課標(biāo)要求的文學(xué)作品應(yīng)先整體感知,培養(yǎng)學(xué)生歸納推理的邏輯思維能力出發(fā)進(jìn)行的設(shè)計。)其答案是一個“悲”字,由此輻射出兩個問題:詩人因何而“悲”?如何寫“悲”?(此問題設(shè)計順勢而出,目的在于培養(yǎng)學(xué)生探究問題的能力。)
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 3.4 二項分布. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們來看一個問題:從100件產(chǎn)品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次數(shù)用表示,求離散型隨機變量的概率分布. 由于是有放回的抽取,所以這種抽取是是獨立的重復(fù)試驗.隨機變量的所有取值為:0,1,2,3.顯然,對于一次抽取,抽到不合格品的概率為0.03,抽到合格品的概率為1-0.03.于是的概率(僅求到組合數(shù)形式)分別為: , , , . 所以,隨機變量的概率分布為 0123P 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 10*動腦思考 探索新知 一般地,如果在一次試驗中某事件A發(fā)生的概率是P,隨機變量為n次獨立試驗中事件A發(fā)生的次數(shù),那么隨機變量的概率分布為: 01…k…nP…… 其中. 我們將這種形式的隨機變量的概率分布叫做二項分布.稱隨機變量服從參數(shù)為n和P的二項分布,記為~B(n,P). 二項分布中的各個概率值,依次是二項式的展開式中的各項.第k+1項為. 二項分布是以伯努利概型為背景的重要分布,有著廣泛的應(yīng)用. 在實際問題中,如果n次試驗相互獨立,且各次實驗是重復(fù)試驗,事件A在每次實驗中發(fā)生的概率都是p(0<p<1),則事件A發(fā)生的次數(shù)是一個離散型隨機變量,服從參數(shù)為n和P的二項分布. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題方法 20
以事項辦理全流程信息公開為基礎(chǔ),抽調(diào)專門人員成立幫代辦隊伍,建章立制規(guī)范管理幫代辦事務(wù),圍繞企業(yè)開辦、投資項目備案、建設(shè)工程規(guī)劃許可證件辦理等復(fù)雜事項,推出涉企閉環(huán)服務(wù),一對一“幫辦代辦”,在接受申請人咨詢、協(xié)助準(zhǔn)備齊全材料后,幫代辦窗口工作人員帶領(lǐng)或代表申請人進(jìn)行業(yè)務(wù)辦理,提升辦事服務(wù)效率。四、下一步工作打算做好監(jiān)測整改。按要求完成互查、巡查、三方監(jiān)測反饋的整改任務(wù),積極探索通過自查和借助三方監(jiān)測力量,確保網(wǎng)站合格達(dá)標(biāo)。提升業(yè)務(wù)能力。做好政務(wù)公開督促指導(dǎo),組織開展業(yè)務(wù)培訓(xùn),做好每月互查整改,確保內(nèi)容規(guī)范公開,提升解讀工作質(zhì)量,加強政策咨詢服務(wù),推動開展涉企意見征集等 ,做好人員調(diào)整的動態(tài)管理,維護(hù)好欄目信息發(fā)布,規(guī)范辦理依申請公開,切實提高群眾滿意度。
一、推動政府信息公開規(guī)范化常態(tài)化更新加強部門督促指導(dǎo)。印發(fā)《XX開發(fā)區(qū)管委辦公室關(guān)于開展政務(wù)公開重點工作提升行動的通知》,每季度對政務(wù)公開完成情況排名通報,開展工作調(diào)度和業(yè)務(wù)培訓(xùn)2次,組織預(yù)測評、集中辦公整改和部門自查互查促進(jìn)各部門業(yè)務(wù)交流提升。做好信息規(guī)范發(fā)布。做好行政規(guī)范性文件格式調(diào)整,集中統(tǒng)一公開,全年通過管委政府信息公開網(wǎng)主動公開政府信息655條。規(guī)范辦理依申請公開。受理依申請公開1件均按時答復(fù),未發(fā)生政府信息公開行政復(fù)議、行政訴訟情況。主動回應(yīng)群眾關(guān)切。開設(shè)“穩(wěn)經(jīng)濟大盤一攬子政策”“支持市場主體紓困發(fā)展”“擴大有效投資”和“三次產(chǎn)業(yè)高質(zhì)量協(xié)同發(fā)展”等欄目;共受理市長熱線2493條,辦結(jié)2393條。二、做好政府網(wǎng)站和政務(wù)新媒體內(nèi)容安全管理認(rèn)真落實整改任務(wù)。完成月度互查、三方監(jiān)測、季度巡查、信息安全專項檢查和錯敏詞等專項整改任務(wù),整改相關(guān)信息159條。加強內(nèi)容安全排查。
XX年高考前國旗下講話稿:面對高考笑看人生各位老師、同學(xué)們:大家好!今天是XX年6月2日----星期一,它意味著,對于我們高三年的同學(xué)來講,這一次升旗儀式是他們作為高中生涯參加的最后一次升旗儀式了:五天后他們就要奔赴高考的考場,去接受祖國的挑選,然后去到他們夢想的地方,也是祖國需要的地方,去學(xué)習(xí),去工作,去圓自己的人生之夢!今天我們?yōu)榧磳⒉饺敫呖伎紙龅母呷w同學(xué)壯行,為他們助陣壯威!在此也提醒同學(xué)們面對高考:首先,要沉著冷靜。現(xiàn)在的高考,考的不再僅僅是知識的再現(xiàn),而是全面考查考生的能力、素養(yǎng)和意志耐力。因此,保持良好的心理狀態(tài),輕松和沉著冷靜地解答問題,才能思維活躍,思路暢通。心浮氣躁,難免亂了陣腳;沉著冷靜,才能應(yīng)對自如。其次,要細(xì)心謹(jǐn)慎。細(xì)心能夠防止和糾正粗心大意造成的錯誤,尤其是筆誤。做完試題要細(xì)心檢查,防止題目漏做。
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學(xué)生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大小.如圖7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學(xué)生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大小.如圖7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問題 兩角和的余弦公式內(nèi)容是什么? 兩角和的余弦公式內(nèi)容是什么? 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 5*動腦思考 探索新知 由同角三角函數(shù)關(guān)系,知 , 當(dāng)時,得到 (1.5) 利用誘導(dǎo)公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應(yīng)使式子的左右兩端都有意義. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題的方法 15*鞏固知識 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進(jìn)行轉(zhuǎn)換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫成,從而使得三角式可以應(yīng)用公式.要注意應(yīng)用這種變形方法來解決問題. 引領(lǐng) 講解 說明 引領(lǐng) 分析 說明 啟發(fā) 引導(dǎo) 啟發(fā) 分析 觀察 思考 主動 求解 觀察 思考 理解 口答 注意 觀察 學(xué)生 是否 理解 知識 點 學(xué)生 自我 發(fā)現(xiàn) 歸納 25
【教師總結(jié):聯(lián)合國的會徽的世界地圖象征著聯(lián)合國是一個世界性的國際組織;圖案中得橄欖枝象征著和平。聯(lián)合國采取了很多措施以實現(xiàn)它的宗旨,如對于朝鮮違反國際法規(guī)進(jìn)行核試驗,聯(lián)合國給予警告和制裁,充分體現(xiàn)了它維護(hù)國際和平與安全,促進(jìn)國際合作與發(fā)展的宗旨。】對于中國與聯(lián)合國的關(guān)系這部分內(nèi)容,我將請閱讀教材92頁幾幅圖片及材料內(nèi)容,設(shè)置活動探究課中國在聯(lián)合國的聲音和身影,請合作討論思考以下兩個問題,中國與聯(lián)合國的關(guān)系;列舉事實說明中國在國際社會中的重要作用。 教師通過剖析中國在聯(lián)合國的地位和作用,引導(dǎo)學(xué)生理解中國在國際社會中發(fā)揮著重要作用,是負(fù)責(zé)任的國家;同時培養(yǎng)學(xué)生綜合運用知識分析說明問題的能力,使學(xué)生感受作為中國人的自豪?!窘處熆偨Y(jié):中國是聯(lián)合國的創(chuàng)始國之一,中國作為聯(lián)合國的創(chuàng)始國和安理會常任理事國之一,一貫遵循聯(lián)合國憲章的宗旨和原則,積極參與聯(lián)合國及其專門機構(gòu)有利于世界和平和發(fā)展的活動?!?/p>