知識(shí)與技能1.了解大牧場(chǎng)放牧業(yè)和乳畜業(yè)兩種農(nóng)業(yè)地域類型及其分布。2.通過(guò)學(xué)習(xí)大牧場(chǎng)放牧業(yè),學(xué)會(huì)分析農(nóng)業(yè)區(qū)位因素,訓(xùn)練讀圖分析能力。3.掌握大牧場(chǎng)放牧業(yè)在經(jīng)營(yíng)方式、商品化、專業(yè)化、經(jīng)濟(jì)效益等方面的特點(diǎn)。4.解西歐乳畜業(yè)的形成因素。過(guò)程 與方法1.通過(guò)對(duì)潘帕斯草原大牧場(chǎng)放牧業(yè)區(qū)位因素的分析,學(xué)會(huì)歸納大牧場(chǎng)放牧業(yè)的區(qū)位條件。2.把西歐乳畜業(yè)和潘帕斯草原大牧場(chǎng)放牧業(yè)的區(qū)位條件作比較。情感態(tài)度與價(jià)值觀1.自然條件是農(nóng)業(yè)地域類型形成的條件,人類必須尊重自然規(guī)律,才能天人合一。2.人文條件也越來(lái)越大地影響到農(nóng)業(yè)的區(qū)位選擇,事物是發(fā)展的,不能用靜止的觀點(diǎn)看待問(wèn)題?!窘虒W(xué)重點(diǎn)】1.理解大牧場(chǎng)放牧業(yè)和乳畜業(yè)兩類農(nóng)業(yè)地域類型的區(qū)位因素。2.利用圖表資料分析農(nóng)業(yè)區(qū)位因素的能力。
為城市居民提供休養(yǎng)生息的場(chǎng)所,是城市最基本的功能區(qū).城市中最為廣泛的土地利用方式就是住宅用地.一般住宅區(qū)占據(jù)城市空間的40%—60%。(閱讀圖2.3)請(qǐng)同學(xué)講解高級(jí)住宅區(qū)與低級(jí)住宅區(qū)的差別(學(xué)生答)(教師總結(jié))(教師講解)另外還有行政區(qū)、文化區(qū)等。而在中小城市,這些部門(mén)占地面積很小,或者布局分散,形成不了相應(yīng)的功能 區(qū)。(教師提問(wèn))我們把城市功能區(qū)分了好幾種,比如說(shuō)住宅區(qū),是不是土地都是被居住地占據(jù)呢?是不是就沒(méi)有其他的功能了呢?(學(xué)生回答)不是(教師總結(jié))不是的。我們說(shuō)的住宅區(qū)只是在占地面積上,它是占絕大多數(shù),但還是有土地是被其它功能占據(jù)的,比如說(shuō)住宅區(qū)里的商店、綠化等也要占據(jù)一定的土地, 只是占的比例比較小而已。下面請(qǐng)看書(shū)上的活動(dòng)題。
教學(xué)目標(biāo)1.知識(shí)與技能目標(biāo):結(jié)合實(shí)例理解影響工業(yè)區(qū)位選擇的因素。聯(lián)系實(shí)際理解工業(yè)區(qū)位的發(fā)展變化。理解環(huán)境對(duì)工業(yè)區(qū)位的影響。2.過(guò)程與方法目標(biāo):利用圖表,分析影響 工業(yè)區(qū)位,培養(yǎng)學(xué)生應(yīng)用基礎(chǔ)知識(shí)及讀圖分析能力。了解本地工業(yè)發(fā)展情況,培養(yǎng)學(xué)生的分析能力。3.情感態(tài)度價(jià)值觀:通過(guò)對(duì)工業(yè)區(qū)位因素的學(xué)習(xí),激發(fā)學(xué)生探究地理問(wèn)題的興趣。由環(huán)境對(duì)工業(yè)區(qū)位選擇的影響,培養(yǎng)學(xué)生的環(huán)保意識(shí),樹(shù)立工業(yè)發(fā)展必須走可持續(xù)發(fā)展之路的思想。教學(xué)重點(diǎn)1影響工業(yè)區(qū)位的主要因素;2.運(yùn)用工業(yè)區(qū)選擇的基本原理對(duì)工廠進(jìn)行合理的區(qū)位選擇。教學(xué)難點(diǎn) 判斷影響某個(gè)工廠區(qū)位的主導(dǎo)因素及其合理布局。教學(xué)方法 案例分析法、對(duì)比分析法、讀圖分析法、探究法教學(xué)用具 多媒體課件,圖表及補(bǔ)充材料課堂類型
【教學(xué)重點(diǎn)】1.利用農(nóng)業(yè)區(qū)位因素分析的方法,學(xué)習(xí)水稻種植業(yè)和商品谷物農(nóng)業(yè)的特點(diǎn);2.對(duì)比水稻種植業(yè)和商品谷物農(nóng)業(yè)兩種農(nóng)業(yè)生產(chǎn)地域類型,理解在農(nóng)業(yè)地域類型形成的過(guò)程中,各個(gè)農(nóng)業(yè)區(qū)位因素對(duì)其發(fā)展的影響。【教學(xué)難點(diǎn)】1.學(xué)習(xí)農(nóng)業(yè)區(qū)位因素分析的方法,分析形成農(nóng)業(yè)地域類型的主導(dǎo)因素;2.結(jié)合文字資料與圖示資料的閱讀,初步掌握提取地理信息的基本方法?!窘虒W(xué)方法】自主探究與講議結(jié)合【教學(xué)課時(shí)】1課時(shí)【教學(xué)過(guò)程】(導(dǎo)入新課)同學(xué)們,通過(guò)前面一節(jié)課的學(xué)習(xí),我們已經(jīng)樹(shù)立了農(nóng)業(yè)區(qū)位因素的基本理論,并且有了農(nóng)業(yè)地域類型的一些基本認(rèn)識(shí),學(xué)習(xí)了種植業(yè)和畜牧業(yè)兼有的澳大利亞的混合農(nóng)業(yè),這一節(jié)我們繼續(xù)學(xué)習(xí)兩種以種 植業(yè)為主的農(nóng)業(yè)地域類型——季風(fēng)水田農(nóng)業(yè)和商品谷物農(nóng)業(yè)。
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過(guò)渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長(zhǎng)方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開(kāi)式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開(kāi)式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開(kāi)式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開(kāi)式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒(méi)有影響. ( )(3)Cknan-kbk是(a+b)n展開(kāi)式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開(kāi)式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開(kāi)式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開(kāi)式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 10*動(dòng)腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時(shí),不妨設(shè)角為鈍角,如圖所示,以為原點(diǎn),以射線的方向?yàn)檩S正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對(duì)應(yīng)的邊長(zhǎng)分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時(shí),同樣可以得到這個(gè)結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對(duì)的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問(wèn)題: (1)已知三角形的兩個(gè)角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對(duì)角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例6一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時(shí)后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測(cè)量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長(zhǎng)度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長(zhǎng)度約為409m. 圖1-15 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 40
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn)*鞏固知識(shí) 典型例題 例6 一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時(shí)后船行駛到B處,此時(shí)燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因?yàn)椤螻BC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測(cè)量的點(diǎn)C,如果,m,m,試計(jì)算隧道AB的長(zhǎng)度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長(zhǎng)度約為409m. 例8 三個(gè)力作用于一點(diǎn)O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長(zhǎng)線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn)
1、互逆命題:在兩個(gè)命題中,如果第一個(gè)命題的條件是第二個(gè)命題的 ,而第一個(gè)命題的結(jié)論是第二個(gè)命題的 ,那么這兩個(gè)命題互逆命題,如果把其中一個(gè)命題叫做原命題,那么另一個(gè)命題叫做它的 .2、互逆定理:如果一個(gè)定理的逆命題也是 ,那么這個(gè)逆命題就是原來(lái)定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學(xué)習(xí)診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).
一、導(dǎo)入新課人類社會(huì)越來(lái)越現(xiàn)代化,新科學(xué)技術(shù)日新月異,令人目不暇接,稱之到了“知識(shí)爆炸”的時(shí)代也毫不為過(guò)。由此而來(lái)的是生活的快節(jié)奏,學(xué)習(xí)和工作的競(jìng)爭(zhēng)也越來(lái)越激烈。這種競(jìng)爭(zhēng)一直波及到了兒童,加之中國(guó)幾千年來(lái)形成的望子成龍的傳統(tǒng)觀念,使作父母的把一切希望都寄托在孩子身上,實(shí)現(xiàn)自己未能實(shí)現(xiàn)的理想。祖孫三代4、2、1的局面,使12只眼睛都盯在了孩子身上,真是走路怕摔著,吃飯怕噎著,干活怕累著,要星星不敢摘月亮,要吃什么跑遍全城也要買來(lái)。這種過(guò)分保護(hù)、溺愛(ài)及過(guò)早地灌輸知識(shí)會(huì)得到什么結(jié)果呢?樂(lè)觀者說(shuō)孩子越來(lái)越聰明,越來(lái)越早熟,將來(lái)能更好適應(yīng)現(xiàn)代化的要求;悲觀者則認(rèn)為豆芽菜式的孩子將來(lái)經(jīng)不起風(fēng)浪,小皇帝太多了很難凝聚成統(tǒng)一力量,將來(lái)誰(shuí)去當(dāng)兵,誰(shuí)去干那些艱苦創(chuàng)業(yè)性工作……。對(duì)孩子本身來(lái)說(shuō),是幸福還是……在此不想多發(fā)議論,還是讓我們來(lái)看看動(dòng)物世界的孩子們吧,也許會(huì)得到某種啟迪。
1.說(shuō)教材《記念劉和珍君》是魯迅先生用飽醮著熱淚,用悲憤的筆調(diào)寫(xiě)下的一篇感人至深的散文,既有對(duì)愛(ài)國(guó)青年沉痛的悼念,又有對(duì)反動(dòng)派憤怒的控訴,也有對(duì)覺(jué)醒的國(guó)民的吶喊。《記念劉和珍君》是高中語(yǔ)文必修1第三單元第一課的講讀課文。文中描摹人物的音容笑貌,敘述人物的行為事跡,都融入了作者真摯的情感和深刻的感悟。對(duì)學(xué)生明辨是非,領(lǐng)悟時(shí)代精神和人生意義,有著重要的作用。新課標(biāo)強(qiáng)調(diào)了要全面提升高中學(xué)生的語(yǔ)文素養(yǎng),初步形成正確的世界觀、人生觀、價(jià)值觀,并學(xué)會(huì)收集、判斷、處理信息,具有人文素養(yǎng)、創(chuàng)新精神與實(shí)踐能力。同時(shí),《記念劉和珍君》感情真摯,感悟深刻,具有典型人文性。結(jié)合本單元教學(xué)目標(biāo),確立教學(xué)目標(biāo)如下。
二、學(xué)情分析:學(xué)生目前對(duì)形變和彈力有一定的感性認(rèn)識(shí)但是不夠深入;知道支持力、壓力都是彈力,但是不能夠概括產(chǎn)生的原因。理性思維還沒(méi)有達(dá)到一定的層次,要想理解彈力這一抽象概念還有一定困難。因此我采取引導(dǎo)、啟發(fā)的教學(xué)方式。
活動(dòng)內(nèi)容:① 已知,如圖,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求證:AD∥BC分析:要證明AD∥BC,只需證明“同位角相等”,即需證明∠DAE=∠B.證明:∵∠EAC=∠B+∠C(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分線的定義)∴∠DAE=∠B(等量代換)∴AD∥BC(同位角相等,兩直線平行)想一想,還有沒(méi)有其他的證明方法呢?這個(gè)題還可以用“內(nèi)錯(cuò)角相等,兩直線平行”來(lái)證.
陸王心學(xué)與程朱理學(xué)相比有何異同?生 不同點(diǎn):在理的內(nèi)涵上不同,程朱理學(xué)認(rèn)為“理”是貫通于宇宙、人倫的客觀存在,是一種普遍的規(guī)律準(zhǔn)則;陸王心學(xué)認(rèn)為心即理,是“良知”,認(rèn)為人心便是世界萬(wàn)物的本原。方法上也有不同:前者向外追究,“格物致知”;后者向內(nèi)探求,“發(fā)明本心”以求理,克服私欲、回復(fù)良知。生 相同點(diǎn):都提出了一個(gè)宇宙、社會(huì)、人生遵循的“理”。師 對(duì)。程朱理學(xué)是客觀唯心主義,陽(yáng)明心學(xué)是主觀唯心主義。這兩者的分歧是理學(xué)范圍內(nèi)的分歧,其基本思想是一致的。師 宋明理學(xué)與漢唐以前的儒學(xué)比較,最大的特點(diǎn)在于批判地吸收了佛教哲學(xué)的思辨結(jié)構(gòu)和道教的宇宙生成論,將儒家的倫理學(xué)說(shuō)概括升華為哲學(xué)基本問(wèn)題。其實(shí)質(zhì)是把佛、道“養(yǎng)性”“修身”引向儒家的“齊家”“治國(guó)”“平天下”,對(duì)儒家的綱常道德給予哲學(xué)論證,使之神圣化、絕對(duì)化、普遍化,以便深入人心,做到人人遵而行之。
一、說(shuō)教材《開(kāi)辟新航路》是高中《歷史·必修二》第5課的內(nèi)容。從三個(gè)方面向?qū)W生介紹了歐洲人開(kāi)辟新航路的歷史:即新航路開(kāi)辟的原因和條件、新航路開(kāi)辟經(jīng)過(guò)以及影響。前4課內(nèi)容介紹了古代中國(guó)經(jīng)濟(jì)的基本結(jié)構(gòu)與特點(diǎn),從第5課開(kāi)始學(xué)習(xí)資本主義世界市場(chǎng)的形成和發(fā)展。本課內(nèi)容相當(dāng)重要,上承古代中國(guó),下啟近代世界。新航路的開(kāi)辟,打破了世界相對(duì)隔絕的狀態(tài),世界真正開(kāi)始融合為一個(gè)整體。從此,以西歐為中心的世界市場(chǎng)的雛形開(kāi)始出現(xiàn)。隨后的殖民擴(kuò)張,世界市場(chǎng)拓展;第一次工業(yè)革命,世界市場(chǎng)基本形成;第二次工業(yè)革命,世界市場(chǎng)發(fā)展。二、說(shuō)目標(biāo)1、課程標(biāo)準(zhǔn)概述迪亞士、哥倫布開(kāi)辟新航路的史實(shí),認(rèn)識(shí)地理大發(fā)現(xiàn)對(duì)世界市場(chǎng)形成的意義。2、三維目標(biāo)①知識(shí)與能力:掌握新航路開(kāi)辟的原因、經(jīng)過(guò)、影響。②過(guò)程與方法:引導(dǎo)學(xué)生分析原因及影響,培養(yǎng)學(xué)生分析和歸納問(wèn)題的能力。③情感態(tài)度與價(jià)值觀:A、通過(guò)對(duì)新航路開(kāi)辟過(guò)程的學(xué)習(xí),使學(xué)生感受和學(xué)習(xí)探險(xiǎn)家們勇于進(jìn)取的開(kāi)拓精神。B、通過(guò)學(xué)習(xí)新航路開(kāi)辟的影響,使學(xué)生認(rèn)識(shí)新航路開(kāi)辟促進(jìn)了人類社會(huì)的整體發(fā)展。
一、教學(xué)理論依據(jù)及設(shè)計(jì)理念以新課程理念和新課標(biāo)為指針,依據(jù)建構(gòu)主義理論、學(xué)科探究理論和多元智力理論,采用探究式的教學(xué)模式來(lái)組織實(shí)施本節(jié)課的教學(xué)。學(xué)生成為課堂的主體和知識(shí)的主動(dòng)構(gòu)建者。通過(guò)創(chuàng)設(shè)多種情境,讓學(xué)生積極參與、體驗(yàn)、感悟,主動(dòng)獲得新知,并逐步提高學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力。教師從課堂的主宰變?yōu)檎n堂的主導(dǎo),是學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者和合作者。教學(xué)過(guò)程是一個(gè)發(fā)散式的學(xué)生自主學(xué)習(xí)的過(guò)程。采用自主、合作、探究式的教學(xué)方式,讓學(xué)生有多元選擇,激發(fā)他們的潛能,發(fā)展他們的個(gè)性。二、教材分析1.教材的地位與作用:本框題是《生活與哲學(xué)》第二單元《探索世界與追求真理》第六課“求索真理的歷程”的第二節(jié)內(nèi)容。本單元的核心問(wèn)題是如何看待我們周圍的世界,該問(wèn)題也是《生活與哲學(xué)》整本書(shū)的核心問(wèn)題之一。
第一環(huán)節(jié):回顧引入活動(dòng)內(nèi)容:①什么叫做定義?舉例說(shuō)明.②什么叫命題?舉例說(shuō)明. 活動(dòng)目的:回顧上節(jié)知識(shí),為本節(jié)課的展開(kāi)打好基礎(chǔ).教學(xué)效果:學(xué)生舉手發(fā)言,提問(wèn)個(gè)別學(xué)生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動(dòng)內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等.(2)如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等.(3)如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形.(4)如果一個(gè)四邊的對(duì)角線相等,那么這個(gè)四邊形是矩形.(5)如果一個(gè)四邊形的兩條對(duì)角線互相垂直,那么這個(gè)四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項(xiàng),“那么……”是由已知事項(xiàng)推斷出的結(jié)論.
三、教學(xué)目標(biāo)根據(jù)《錦瑟》詩(shī)的地位作用以及學(xué)生的實(shí)際情況,還有在古詩(shī)詞教學(xué)方面課程標(biāo)準(zhǔn)的相關(guān)要求,現(xiàn)確定以下“三維教學(xué)目標(biāo)”:(一)知識(shí)與技能目標(biāo):感受體悟古典詩(shī)歌的意境美,發(fā)揮合理的主觀能動(dòng)性進(jìn)行創(chuàng)新性的閱讀鑒賞,正確認(rèn)識(shí)意象在詩(shī)歌意境中的重要作用。并在上述的基礎(chǔ)上提高鑒賞能力和審美情操。(二)過(guò)程與方法目標(biāo):《錦瑟》詩(shī)的講解采用“引導(dǎo)與自我生成”的方法,從老師的引導(dǎo)開(kāi)始,以學(xué)生的研討交流再加之教師的總結(jié)結(jié)束。利用教師引導(dǎo)和師生互動(dòng)刺激學(xué)生的領(lǐng)悟力,提高學(xué)生的認(rèn)知水平與能力。(三)情感態(tài)度價(jià)值觀目標(biāo):培養(yǎng)學(xué)生在尊重傳統(tǒng)文化的基礎(chǔ)上熱愛(ài)祖國(guó)自己文化的態(tài)度,讓學(xué)生正確認(rèn)識(shí)古典詩(shī)詞的精神美。最后在自我感悟中陶冶情操,明心啟智。
一、說(shuō)教材1、本框的地位和作用本框題是人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)思想政治必修4《生活與哲學(xué)》第三單元第九課第一個(gè)框題。從這一框開(kāi)始學(xué)生學(xué)習(xí)唯物辯證法中最基本的概念——矛盾。世界是普遍聯(lián)系和變化發(fā)展的,聯(lián)系的根本內(nèi)容是矛盾,發(fā)展的根本動(dòng)力也是矛盾。矛盾的觀點(diǎn)是唯物辯證法的根本觀點(diǎn)。矛盾規(guī)律即對(duì)立統(tǒng)一規(guī)律揭示了事物發(fā)展的源泉和動(dòng)力。矛盾分析法是我們認(rèn)識(shí)世界和改造世界的根本方法。因而本框題起著承上啟下的作用。2、教學(xué)目標(biāo)知識(shí)與技能:識(shí)記:矛盾、矛盾同一性、斗爭(zhēng)性的含義;矛盾普遍性、特殊性的含義。理解:矛盾同一性與斗爭(zhēng)性的辯證關(guān)系;矛盾普遍性和特殊性的辯證關(guān)系及其重要意義。運(yùn)用:聯(lián)系實(shí)例,分析矛盾含義和矛盾普遍性含義;聯(lián)系生活實(shí)例,分析矛盾特殊性含義。