提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

化學(xué)教師工作計(jì)劃

  • 北師大初中七年級(jí)數(shù)學(xué)上冊(cè)科學(xué)記數(shù)法教案2

    北師大初中七年級(jí)數(shù)學(xué)上冊(cè)科學(xué)記數(shù)法教案2

    光年是表示較大距離的一個(gè)單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米??梢?jiàn),1毫米= 納米,容易算出,1納米相當(dāng)于1毫米的一百萬(wàn)分之一??上攵?納米是多么的小。超微粒子的大小一般在1~100 納米范圍內(nèi),故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點(diǎn),可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調(diào)性可制成隱形飛機(jī)的涂料。納米材料的表面積大,對(duì)外界環(huán)境(物理的和化學(xué)的)十分敏感,在制造傳感器方面是有前途的材料,目前已開(kāi)發(fā)出測(cè)量溫度、熱輻射和檢測(cè)各種特定氣體的傳感器。在生物和醫(yī)學(xué)中也有重要應(yīng)用。納米材料科學(xué)是20世紀(jì)80年代末誕生并正在崛起的科技新領(lǐng)域,它將成為跨世紀(jì)的科技熱點(diǎn)之一。

  • 氯氣高一化學(xué)說(shuō)課稿

    氯氣高一化學(xué)說(shuō)課稿

    1、教材的內(nèi)容、地位和作用氯氣選自高 中化學(xué)第一冊(cè)第四章第一節(jié),這一課題包括兩部分內(nèi)容,第一部分主要介紹氯氣的性質(zhì)和用途第二部分主要介紹氯氣的實(shí)驗(yàn)室制法以及氯離子的檢驗(yàn)氯是比較典型的非金屬元素,氯及氯的化和物在日常生活、工農(nóng)業(yè)中的應(yīng)用非常廣泛對(duì)氯氣性質(zhì)、用途和制法的研究,不僅是下一節(jié)進(jìn)一步學(xué)習(xí)、研究鹵素性質(zhì)相似性及其變化規(guī)律的需要,也是研究同族元素 性質(zhì)變化規(guī)律的需要由于高中階段對(duì)氯氣的性質(zhì)、用途等介紹、應(yīng)用較多,對(duì)學(xué)生全面認(rèn)識(shí)化學(xué)元素、形成正確觀點(diǎn)、掌握正確學(xué)習(xí)方法等有重要作用

  • 大班科學(xué)《水的變化》說(shuō)課稿

    大班科學(xué)《水的變化》說(shuō)課稿

    說(shuō)活動(dòng)價(jià)值:我們常常在有水的日子里一點(diǎn)都不覺(jué)得用水的方便,沒(méi)水的日子里才發(fā)現(xiàn)一點(diǎn)一滴水的珍貴。環(huán)境在我們身邊一點(diǎn)點(diǎn)惡化,但我們每個(gè)人卻常常視而不見(jiàn)。本次活動(dòng)的價(jià)值點(diǎn)就是想通過(guò)現(xiàn)場(chǎng)的實(shí)驗(yàn)活動(dòng)使孩子們親身感受到水對(duì)我們生活的重要以及保護(hù)水資源的重要。因此本次活動(dòng)的目標(biāo)定位為:1、通過(guò)實(shí)驗(yàn)感知水變臟容易和臟水變干凈困難的道理。2、感知水在人們生活中的重要,樹(shù)立良好的環(huán)保意識(shí)。3、有良好的堅(jiān)持參與探究的科學(xué)品質(zhì)和積極動(dòng)腦解決問(wèn)題的能力。說(shuō)目標(biāo)定位:目標(biāo)是集體教學(xué)活動(dòng)的核心和精髓,明確細(xì)致的目標(biāo)將幫助教師精確地描繪出活動(dòng)的重點(diǎn)和難點(diǎn)。在本次活動(dòng)中,我把目標(biāo)定位在三個(gè)方面:

  • 學(xué)生會(huì)量化管理制度

    學(xué)生會(huì)量化管理制度

    一.  量化考核辦法  1.  考核對(duì)象:學(xué)生會(huì)全體成員  2.  本制度實(shí)行積分量化,每人每月基礎(chǔ)分為10分,按考核量化標(biāo)準(zhǔn)給予相應(yīng)加分,扣分。  3.  具體考核方法:各部干事考核由部長(zhǎng)執(zhí)行,每周把考核結(jié)果交給紀(jì)檢部合算;    紀(jì)檢部考核由其余部門(mén)和主席共同執(zhí)行;    主席及各部部長(zhǎng)考核由紀(jì)檢部執(zhí)行。

  • 化肥、化學(xué)農(nóng)藥、農(nóng)膜商品購(gòu)銷(xiāo)合同

    化肥、化學(xué)農(nóng)藥、農(nóng)膜商品購(gòu)銷(xiāo)合同

    合同編號(hào): 簽訂地點(diǎn): 簽訂時(shí)間: 年 月 日供方: 需方: 一、產(chǎn)品名稱、商標(biāo)含量規(guī)格、數(shù)量、金額、供貨時(shí)間及數(shù)量商品名稱 商標(biāo)牌號(hào) 含量規(guī)格 計(jì)量單位 數(shù)量 單位 金額 送取貨時(shí)間及數(shù)量合計(jì) 合計(jì)金額(大寫(xiě))續(xù)表

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.1《計(jì)數(shù)原理》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.1《計(jì)數(shù)原理》教學(xué)設(shè)計(jì)

    授課 日期 班級(jí)16高造價(jià) 課題: §10.1 計(jì)數(shù)原理 教學(xué)目的要求: 1.掌握分類(lèi)計(jì)數(shù)原理與分步計(jì)數(shù)原理的概念和區(qū)別; 2.能利用兩個(gè)原理分析和解決一些簡(jiǎn)單的應(yīng)用問(wèn)題; 3.通過(guò)對(duì)一些應(yīng)用問(wèn)題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學(xué)重點(diǎn)、難點(diǎn): 兩個(gè)原理的概念與區(qū)別 授課方法: 任務(wù)驅(qū)動(dòng)法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》、課件 授課執(zhí)行情況及分析: 板書(shū)設(shè)計(jì)或授課提綱 §10.1 計(jì)數(shù)原理 1、加法原理 2、乘法原理 3、兩個(gè)原理的區(qū)別

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.4《用樣本估計(jì)總體》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.4《用樣本估計(jì)總體》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.4 用樣本估計(jì)總體 *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 初中我們?cè)?jīng)學(xué)習(xí)過(guò)頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個(gè)組內(nèi)的個(gè)數(shù). 【知識(shí)鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機(jī)抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點(diǎn),將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設(shè)定分點(diǎn)數(shù)值時(shí)需要考慮分點(diǎn)值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計(jì)頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計(jì)3030 介紹 質(zhì)疑 引領(lǐng) 分析 講解 說(shuō)明 了解 觀察 思考 解答 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 各組內(nèi)數(shù)據(jù)的個(gè)數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個(gè)數(shù)之比叫做該組的頻率. 計(jì)算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計(jì)301.000 根據(jù)頻率分布表,可以畫(huà)出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對(duì)應(yīng)矩形的面積. 【想一想】 各小矩形的面積之和應(yīng)該等于1.為什么呢? 【新知識(shí)】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測(cè),去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計(jì)總體中某事件發(fā)生的概率.樣本選擇得恰當(dāng),這種估計(jì)是比較可信的. 如上所述,用樣本的頻率分布估計(jì)總體的步驟為: (1) 選擇恰當(dāng)?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計(jì)算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點(diǎn)并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計(jì)總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 觀察 理解 記憶 帶領(lǐng) 學(xué)生 分析 25

  • 小學(xué)生綜合實(shí)踐活動(dòng)教學(xué)教案設(shè)計(jì)

    小學(xué)生綜合實(shí)踐活動(dòng)教學(xué)教案設(shè)計(jì)

    一、教學(xué)重難點(diǎn)有效引導(dǎo)學(xué)生反思本人和父母的情感,回想父母對(duì)本人的付出,表達(dá)對(duì)父母的愛(ài),養(yǎng)成感恩父母、好好學(xué)習(xí)的氛圍。二、教學(xué)流程?。?)導(dǎo)入:1.黑板板書(shū):父母愛(ài) 愛(ài)父母2.導(dǎo)語(yǔ):同學(xué)們,今天是新學(xué)期開(kāi)學(xué)的第一天。在父母的關(guān)心下,我們一天天地茁壯生長(zhǎng),今天終于成長(zhǎng)為一名四年級(jí)小學(xué)生了。今天的課,就以“父母愛(ài)愛(ài)父母”為主題,開(kāi)展我們的課堂。

  • 【高教版】中職數(shù)學(xué)拓展模塊:2.3《拋物線》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:2.3《拋物線》教學(xué)設(shè)計(jì)

    一、教學(xué)目標(biāo)(一)知識(shí)教育點(diǎn)使學(xué)生掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過(guò)程.(二)能力訓(xùn)練點(diǎn)要求學(xué)生進(jìn)一步熟練掌握解析幾何的基本思想方法,提高分析、對(duì)比、概括、轉(zhuǎn)化等方面的能力.(三)學(xué)科滲透點(diǎn)通過(guò)一個(gè)簡(jiǎn)單實(shí)驗(yàn)引入拋物線的定義,可以對(duì)學(xué)生進(jìn)行理論來(lái)源于實(shí)踐的辯證唯物主義思想教育.二、教材分析1.重點(diǎn):拋物線的定義和標(biāo)準(zhǔn)方程.2.難點(diǎn):拋物線的標(biāo)準(zhǔn)方程的推導(dǎo).三、活動(dòng)設(shè)計(jì)提問(wèn)、回顧、實(shí)驗(yàn)、講解、板演、歸納表格.四、教學(xué)過(guò)程(一)導(dǎo)出課題我們已學(xué)習(xí)了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學(xué)習(xí)第四種圓錐曲線——拋物線,以及它的定義和標(biāo)準(zhǔn)方程.課題是“拋物線及其標(biāo)準(zhǔn)方程”.首先,利用籃球和排球的運(yùn)動(dòng)軌跡給出拋物線的實(shí)際意義,再利用太陽(yáng)灶和拋物線型的橋說(shuō)明拋物線的實(shí)際用途。

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.5《正態(tài)分布》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.5《正態(tài)分布》教學(xué)設(shè)計(jì)

    教學(xué)目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質(zhì)。教學(xué)重點(diǎn):正態(tài)分布的密度函數(shù)和分布函數(shù)。教學(xué)難點(diǎn):正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質(zhì)。教學(xué)學(xué)時(shí):2學(xué)時(shí)教學(xué)過(guò)程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計(jì)算積分。首先計(jì)算。因?yàn)?利用極坐標(biāo)計(jì)算)所以。記,則利用定積分的換元法有因?yàn)?,所以它可以作為某個(gè)連續(xù)隨機(jī)變量的概率密度函數(shù)。定義 如果連續(xù)隨機(jī)變量的概率密度為則稱隨機(jī)變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。

  • 【高教版】中職數(shù)學(xué)拓展模塊:2.2《雙曲線》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:2.2《雙曲線》教學(xué)設(shè)計(jì)

    教學(xué)準(zhǔn)備 1. 教學(xué)目標(biāo) 知識(shí)與技能掌握雙曲線的定義,掌握雙曲線的四種標(biāo)準(zhǔn)方程形式及其對(duì)應(yīng)的焦點(diǎn)、準(zhǔn)線.過(guò)程與方法掌握對(duì)雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),進(jìn)一步理解求曲線方程的方法——坐標(biāo)法.通過(guò)本節(jié)課的學(xué)習(xí),提高學(xué)生觀察、類(lèi)比、分析和概括的能力.情感、態(tài)度與價(jià)值觀通過(guò)本節(jié)的學(xué)習(xí),體驗(yàn)研究解析幾何的基本思想,感受圓錐曲線在刻畫(huà)現(xiàn)實(shí)和解決實(shí)際問(wèn)題中的作用,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想.2. 教學(xué)重點(diǎn)/難點(diǎn) 教學(xué)重點(diǎn)雙曲線的定義及焦點(diǎn)及雙曲線標(biāo)準(zhǔn)方程.教學(xué)難點(diǎn)在推導(dǎo)雙曲線標(biāo)準(zhǔn)方程的過(guò)程中,如何選擇適當(dāng)?shù)淖鴺?biāo)系. 3. 教學(xué)用具 多媒體4. 標(biāo)簽

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.4《圓》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.4《圓》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 8.4 圓(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)直線與圓的位置關(guān)系有三種(如圖8-21): (1)相離:無(wú)交點(diǎn); (2)相切:僅有一個(gè)交點(diǎn); (3)相交:有兩個(gè)交點(diǎn). 并且知道,直線與圓的位置關(guān)系,可以由圓心到直線的距離d與半徑r的關(guān)系來(lái)判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說(shuō)明 質(zhì)疑 引導(dǎo) 分析 了解 思考 思考 帶領(lǐng) 學(xué)生 分析 啟發(fā) 學(xué)生思考 0 15*動(dòng)腦思考 探索新知 【新知識(shí)】 設(shè)圓的標(biāo)準(zhǔn)方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關(guān)系. 講解 說(shuō)明 引領(lǐng) 分析 思考 理解 帶領(lǐng) 學(xué)生 分析 30*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例6 判斷下列各直線與圓的位置關(guān)系: ⑴直線, 圓; ⑵直線,圓. 解?、?由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標(biāo)準(zhǔn)方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關(guān)系的其他方法? *例7 過(guò)點(diǎn)作圓的切線,試求切線方程. 分析 求切線方程的關(guān)鍵是求出切線的斜率.可以利用原點(diǎn)到切線的距離等于半徑的條件來(lái)確定. 解 設(shè)所求切線的斜率為,則切線方程為 , 即 . 圓的標(biāo)準(zhǔn)方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說(shuō)明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問(wèn)題中有著廣泛的應(yīng)用. 【想一想】 能否利用“切線垂直于過(guò)切點(diǎn)的半徑”的幾何性質(zhì)求出切線方程? 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 講解 說(shuō)明 觀察 思考 主動(dòng) 求解 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 50

  • 【高教版】中職數(shù)學(xué)拓展模塊:2.1《橢圓》優(yōu)秀教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:2.1《橢圓》優(yōu)秀教學(xué)設(shè)計(jì)

    本人所教的兩個(gè)班級(jí)學(xué)生普遍存在著數(shù)學(xué)科基礎(chǔ)知識(shí)較為薄弱,計(jì)算能力較差,綜合能力不強(qiáng),對(duì)數(shù)學(xué)學(xué)習(xí)有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識(shí)到自己的不足,對(duì)數(shù)學(xué)課的學(xué)習(xí)興趣高,積極性強(qiáng)。 學(xué)生在學(xué)習(xí)交往上表現(xiàn)為個(gè)別化學(xué)習(xí),課堂上較為依賴?yán)蠋煹囊龑?dǎo)。學(xué)生的群體性小組交流能力與協(xié)同討論學(xué)習(xí)的能力不強(qiáng),對(duì)學(xué)習(xí)資源和知識(shí)信息的獲取、加工、處理和綜合的能力較低。在教學(xué)中盡量分析細(xì)致,減少跨度較大的環(huán)節(jié),對(duì)重要的推導(dǎo)過(guò)程采用板書(shū)方式逐步進(jìn)行,力求讓絕大多數(shù)學(xué)生接受。 1.理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo);掌握橢圓的標(biāo)準(zhǔn)方程;會(huì)根據(jù)條件求橢圓的標(biāo)準(zhǔn)方程,會(huì)根據(jù)橢圓的標(biāo)準(zhǔn)方程求焦點(diǎn)坐標(biāo). 2.通過(guò)橢圓圖形的研究和標(biāo)準(zhǔn)方程的討論,使學(xué)生掌握橢圓的幾何性質(zhì),能正確地畫(huà)出橢圓的圖形,并了解橢圓的一些實(shí)際應(yīng)用。 1.讓學(xué)生經(jīng)歷橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程,進(jìn)一步掌握求曲線方程的一般方法,體會(huì)數(shù)形結(jié)合等數(shù)學(xué)思想;培養(yǎng)學(xué)生運(yùn)用類(lèi)比、聯(lián)想等方法提出問(wèn)題. 2.培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合的思想,進(jìn)一步掌握利用方程研究曲線的基本方法,通過(guò)與橢圓幾何性質(zhì)的對(duì)比來(lái)提高學(xué)生聯(lián)想、類(lèi)比、歸納的能力,解決一些實(shí)際問(wèn)題。 1.通過(guò)具體的情境感知研究橢圓標(biāo)準(zhǔn)方程的必要性和實(shí)際意義;體會(huì)數(shù)學(xué)的對(duì)稱美、簡(jiǎn)潔美,培養(yǎng)學(xué)生的審美情趣,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度. 2.進(jìn)一步理解并掌握代數(shù)知識(shí)在解析幾何運(yùn)算中的作用,提高解方程組和計(jì)算能力,通過(guò)“數(shù)”研究“形”,說(shuō)明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過(guò)“數(shù)”的變化研究“形”的本質(zhì)。幫助學(xué)生建立勇于探索創(chuàng)新的精神和克服困難的信心。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級(jí)上冊(cè)統(tǒng)計(jì)教案

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級(jí)上冊(cè)統(tǒng)計(jì)教案

    【新知識(shí)點(diǎn)】認(rèn)識(shí)扇形統(tǒng)計(jì)圖統(tǒng)計(jì)填寫(xiě)扇形統(tǒng)計(jì)圖根據(jù)扇形統(tǒng)計(jì)圖所提供的數(shù)據(jù)回答問(wèn)題【單元教學(xué)目標(biāo)】1,認(rèn)識(shí)扇形統(tǒng)計(jì)圖,了解扇形統(tǒng)計(jì)圖的特點(diǎn).2,能夠看懂并會(huì)填扇形統(tǒng)計(jì)圖.3,會(huì)根據(jù)扇形統(tǒng)計(jì)圖所提供的數(shù)據(jù)回答一些簡(jiǎn)單的問(wèn)題.4,進(jìn)一步了解統(tǒng)計(jì)在實(shí)際生活中的地位和作用.5,通過(guò)對(duì)相關(guān)素材的整理和分析,使學(xué)生受到一定的思想教育.【單元教學(xué)重難點(diǎn)】重點(diǎn):學(xué)生掌握扇形統(tǒng)計(jì)圖的特點(diǎn)和作用.難點(diǎn):在學(xué)習(xí)中體會(huì)各種統(tǒng)計(jì)圖的不同特點(diǎn).【教學(xué)建議】學(xué)生已經(jīng)系統(tǒng)地學(xué)習(xí)過(guò)有關(guān)條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的知識(shí),也初步認(rèn)識(shí)了扇形,而且也學(xué)習(xí)了有關(guān)百分?jǐn)?shù)的知識(shí),所有這些都為學(xué)校繼續(xù)學(xué)習(xí)統(tǒng)計(jì)圖的最后一部分內(nèi)容——扇形統(tǒng)計(jì)圖打下了良好的基礎(chǔ).【課時(shí)安排】

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)統(tǒng)計(jì)教案

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)統(tǒng)計(jì)教案

    分別算出2008年比2007年各季度增產(chǎn)的百分?jǐn)?shù)和合計(jì)數(shù),再制成統(tǒng)計(jì)表.分析:根據(jù)題目要求,要算出各季度增產(chǎn)的百分?jǐn)?shù),我們只要根據(jù)2008年與2007年各個(gè)季度的原始數(shù)據(jù),運(yùn)用“求一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾”的方法就可以算出.算出了各個(gè)季度增產(chǎn)的百分?jǐn)?shù),根據(jù)題意制統(tǒng)計(jì)表時(shí),既要按照季度分類(lèi),又要反映出年份的類(lèi)別,所以在確定表頭時(shí)可分為3部分:年份、臺(tái)數(shù)、季度,年份又分為2007年產(chǎn)量、2008年產(chǎn)量、2008年比2007年增產(chǎn)的百分?jǐn)?shù).2、田力化肥廠今年第一季度生產(chǎn)情況如下:元月份計(jì)劃生產(chǎn)1500噸,實(shí)際生產(chǎn)1620噸;二月計(jì)劃生產(chǎn)1600噸,實(shí)際生產(chǎn)1680噸;三月份計(jì)劃生產(chǎn)1640噸,實(shí)際生產(chǎn)1720噸,根據(jù)上面的數(shù)據(jù),算出各月完成計(jì)劃的百分?jǐn)?shù),并制成統(tǒng)計(jì)表.(1)制作含有百分?jǐn)?shù)的統(tǒng)計(jì)表時(shí),百分?jǐn)?shù)這一欄一定要寫(xiě)清楚是誰(shuí)占誰(shuí)的百分之幾,并按“求一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾”的解題方法正確算出對(duì)應(yīng)百分?jǐn)?shù)”

  • 人教版高中數(shù)學(xué)選修3排列與排列數(shù)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3排列與排列數(shù)教學(xué)設(shè)計(jì)

    4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個(gè)不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個(gè)不同元素中任選4個(gè)元素的排列問(wèn)題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個(gè)?能被5整除的有多少個(gè)?(2)這些四位數(shù)中大于6 500的有多少個(gè)?解:(1)偶數(shù)的個(gè)位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計(jì)數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個(gè));能被5整除的數(shù)個(gè)位必須是5,故有A_6^3=120(個(gè)).(2)最高位上是7時(shí)大于6 500,有A_6^3種,最高位上是6時(shí),百位上只能是7或5,故有2×A_5^2種.由分類(lèi)加法計(jì)數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個(gè)).

  • 人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計(jì)

    探究新知問(wèn)題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.

  • 人教版高中數(shù)學(xué)選修3二項(xiàng)式定理教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3二項(xiàng)式定理教學(xué)設(shè)計(jì)

    二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開(kāi)式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開(kāi)式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開(kāi)式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開(kāi)式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒(méi)有影響. ( )(3)Cknan-kbk是(a+b)n展開(kāi)式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開(kāi)式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開(kāi)式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開(kāi)式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中數(shù)學(xué)選修3全概率公式教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3全概率公式教學(xué)設(shè)計(jì)

    2.某小組有20名射手,其中1,2,3,4級(jí)射手分別為2,6,9,3名.又若選1,2,3,4級(jí)射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機(jī)選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為_(kāi)_______. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級(jí)射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為_(kāi)_______. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號(hào)的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個(gè)廠的產(chǎn)品次品率分別為2% , 1%, 1%,問(wèn)從這批產(chǎn)品中任取一件是次品的概率是多少?

  • 人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計(jì)

    (2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個(gè)條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時(shí)發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機(jī)地抽出6道題,若考生至少答對(duì)其中的4道題即可通過(guò);若至少答對(duì)其中5道題就獲得優(yōu)秀.已知某考生能答對(duì)其中10道題,并且知道他在這次考試中已經(jīng)通過(guò),求他獲得優(yōu)秀成績(jī)的概率.解:設(shè)事件A為“該考生6道題全答對(duì)”,事件B為“該考生答對(duì)了其中5道題而另一道答錯(cuò)”,事件C為“該考生答對(duì)了其中4道題而另2道題答錯(cuò)”,事件D為“該考生在這次考試中通過(guò)”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.

上一頁(yè)123...505152535455565758596061下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!