教學(xué)不應(yīng)僅僅傳授課本上的知識(shí)內(nèi)容,而應(yīng)該在傳授知識(shí)內(nèi)容的同時(shí),注意對(duì)學(xué)生綜合能力的培養(yǎng).在本節(jié)課中,教師并沒(méi)有直接將運(yùn)算法則告訴學(xué)生,而是由學(xué)生利用已有知識(shí)探究得到.在探究過(guò)程中,學(xué)生的數(shù)學(xué)思想得到了進(jìn)一步的拓展,學(xué)生的綜合能力得到了進(jìn)一步的提高.當(dāng)然一節(jié)課的提高并不顯著,但只要堅(jiān)持這種方式方法,最終會(huì)有一個(gè)美好的結(jié)果.2.充分挖掘知識(shí)內(nèi)涵,使學(xué)生體會(huì)數(shù)學(xué)知識(shí)間的密切聯(lián)系在教學(xué)中,有意識(shí)、有計(jì)劃的設(shè)計(jì)教學(xué)活動(dòng),引導(dǎo)學(xué)生體會(huì)單項(xiàng)式乘法與單項(xiàng)式除法之間的聯(lián)系與區(qū)別,感受數(shù)學(xué)的整體性,不斷豐富學(xué)生的解題策略,提高解決問(wèn)題的能力.3.課堂上應(yīng)當(dāng)把更多的時(shí)間留給學(xué)生在課堂教學(xué)中應(yīng)當(dāng)把更多時(shí)間交給學(xué)生.本節(jié)課中計(jì)算法則的探究,例題的講解,習(xí)題的完成,知識(shí)的總結(jié)盡可能的全部由學(xué)生完成,教師所起的作用是點(diǎn)撥,評(píng)價(jià)和指導(dǎo).這樣做,可以更好的體現(xiàn)以學(xué)生為中心的教學(xué)思想,能更好的提高學(xué)生的綜合能力.
一、說(shuō)教材《分式的加減法》是本冊(cè)教材第三章《分式》重要內(nèi)容,是進(jìn)一步學(xué)習(xí)分式方程、反比例函數(shù)以及其它數(shù)學(xué)知識(shí)的基礎(chǔ),同時(shí)也是學(xué)習(xí)物理、化學(xué)等學(xué)科不可缺少的工具。與其它數(shù)學(xué)知識(shí)一樣,它在實(shí)際生活中有著廣泛的應(yīng)用。學(xué)習(xí)分式的加減法并熟練地進(jìn)行運(yùn)算是學(xué)好分式運(yùn)算的關(guān)鍵,為學(xué)生綜合運(yùn)用多種運(yùn)算法則拓寬了空間,有利于學(xué)生對(duì)雙基的掌握,在綜合運(yùn)用多種運(yùn)算法則的過(guò)程中,逐漸形成運(yùn)算能力。同時(shí)本節(jié)課的教學(xué)難度有所增加,學(xué)生通過(guò)觀察、類比、猜想、嘗試等一系列思維活動(dòng)中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應(yīng)用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標(biāo)和重點(diǎn)、難點(diǎn)如下:(一)說(shuō)教學(xué)目標(biāo):1.知識(shí)與技能目標(biāo):理解并掌握異分母分式加減法的法則;經(jīng)歷異分母分式的加減運(yùn)算和通分的過(guò)程,訓(xùn)練學(xué)生的分式運(yùn)算能力,培養(yǎng)學(xué)生在學(xué)習(xí)中轉(zhuǎn)化未知問(wèn)題為已知問(wèn)題的能力;進(jìn)一步通過(guò)實(shí)例發(fā)展學(xué)生的符號(hào)感。
注意:平行四邊形中對(duì)邊是指無(wú)公共點(diǎn)的邊,對(duì)角是指不相鄰的角,鄰邊是指有公共端點(diǎn)的邊,鄰角是指有一條公共邊的兩個(gè)角.而三角形對(duì)邊是指一個(gè)角的對(duì)邊,對(duì)角是指一條邊的對(duì)角.(教學(xué)時(shí)要結(jié)合圖形,讓學(xué)生認(rèn)識(shí)清楚)設(shè)計(jì)意圖:通過(guò)觀察圖片和回顧以前的知識(shí),使學(xué)生由感性認(rèn)識(shí)上升到理性認(rèn)識(shí)。通過(guò)描述平行四邊形的特點(diǎn)和定義,也培養(yǎng)了學(xué)生的語(yǔ)言表達(dá)能力。同時(shí)也滲透了一些由實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的“轉(zhuǎn)化”的數(shù)學(xué)思想。(三)、引導(dǎo)實(shí)驗(yàn)探索新知【探究】平行四邊形是一種特殊的四邊形,它除具有四邊形的性質(zhì)和兩組對(duì)邊分別平行外,還有什么特殊的性質(zhì)呢?我們一起來(lái)探究一下.動(dòng)手操作并思考:讓學(xué)生根據(jù)平行四邊形的定義畫一個(gè)一個(gè)平行四邊形,觀察這個(gè)四邊形,它除具有四邊形的性質(zhì)和兩組對(duì)邊分別平行外以,它的邊和角之間有什么關(guān)系?度量一下,是不是和你猜想的一致?
至此,估計(jì)學(xué)生基本能夠掌握定理,達(dá)到預(yù)定目標(biāo),這時(shí),利用提問(wèn)形式,師生共同進(jìn)行小結(jié)。五、幾點(diǎn)說(shuō)明1、板書設(shè)計(jì):為了使本節(jié)課更具理論性、邏輯性,我將板書設(shè)計(jì)分為三部分,第一部分為圓的軸對(duì)稱性,第二部分為垂徑定理,第三部分為測(cè)評(píng)反饋區(qū)(學(xué)生板演區(qū))。2、由于垂徑定理在圓一章中的重要性,所以這節(jié)課只講了定理而沒(méi)有涉及逆定理。3、設(shè)計(jì)要突出的特色:為了給學(xué)生營(yíng)造一個(gè)民主、平等而又富有詩(shī)意的課堂,我以新數(shù)學(xué)課程標(biāo)準(zhǔn)下的基本理念和總體目標(biāo)為指導(dǎo)思想,在教學(xué)過(guò)程中始終面向全體學(xué)生,依據(jù)學(xué)生的實(shí)際水平,選擇適當(dāng)?shù)慕虒W(xué)起點(diǎn)和教學(xué)方法,充分讓學(xué)生參與教學(xué),在合作交流的過(guò)程中,獲得良好的情感體驗(yàn)。通過(guò)“實(shí)驗(yàn)--觀察--猜想--證明”的思想,讓每個(gè)學(xué)生都有所得,我注意前后知識(shí)的鏈接,進(jìn)行各學(xué)科間的整合,為學(xué)生提供了廣闊的思考空間,同時(shí)讓學(xué)生利用所學(xué)知識(shí)解決實(shí)際問(wèn)題,感受理論聯(lián)系實(shí)際的思想方法。
(四)提高應(yīng)用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請(qǐng)找出圖中的相似三角形,并說(shuō)明理由。設(shè)計(jì)意圖:訓(xùn)練學(xué)生靈活運(yùn)用知識(shí)的能力(五)小結(jié)反思1.、相似三角形的判定方法一:如果一個(gè)三角形的兩個(gè)角分別與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似. 2、在找對(duì)應(yīng)角相等時(shí)要十分重視隱含條件,如公共角、對(duì)頂角、直角等. 3、掌握由平行線構(gòu)造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強(qiáng)調(diào)兩個(gè)基本圖形,培養(yǎng)學(xué)生養(yǎng)成認(rèn)真觀察,注意尋找圖形中的隱含信息的意識(shí)) 4、 常用的找對(duì)應(yīng)角的方法:①已知角相等;②已知角度計(jì)算得出相等的對(duì)應(yīng)角;③公共角;④對(duì)頂角;⑤同角的余(補(bǔ))角相等.
接著,引導(dǎo)學(xué)生回答命題1的題設(shè)、結(jié)論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學(xué)表達(dá)式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對(duì)應(yīng)高。求證:AD/A/D/=K首先讓學(xué)生回憶,證明線段成比例學(xué)過(guò)哪些方法,接著引導(dǎo)學(xué)生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學(xué)生能找到含對(duì)應(yīng)高和對(duì)應(yīng)邊的兩對(duì)三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應(yīng)有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學(xué)生口述教師板書規(guī)范的證明過(guò)程。接著問(wèn)學(xué)生還有哪些證明方法?同理可證得其他兩邊上的對(duì)應(yīng)高的比等于相似比,所以命題1具有一般性。而對(duì)于命題2、命題3的數(shù)學(xué)表達(dá)式和證明方法與命題1類似,所以為了提高教學(xué)效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來(lái),并指導(dǎo)學(xué)生課堂練習(xí)證明這兩個(gè)命題。
準(zhǔn)備200張卡片,在上面分別寫上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號(hào)碼記下,這個(gè)號(hào)碼就算是消息的發(fā)布者,暫時(shí)不放回。第二次,從布袋中盲目取出三張,記下號(hào)碼,這算是第一批聽(tīng)到消息的三個(gè)人,留一張暫時(shí)不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號(hào)碼.這算是第二批聽(tīng)到消息的三個(gè)人.留一張暫時(shí)不放回,其余兩張放回.把第二次摸出的并暫時(shí)留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒(méi)有被重復(fù)摸出的?上述消息傳播問(wèn)題是很有實(shí)用價(jià)值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復(fù)感染問(wèn)題,因?yàn)閭魅静〉膫鞑ゾ拖裣鞑ヒ粯?,既然重?fù)聽(tīng)到消息的可能性是很大的,當(dāng)然重復(fù)感染的可能性也是很大的。
(三)如圖, 中, ,AB=6厘米,BC=8厘米,點(diǎn) 從點(diǎn) 開(kāi)始,在 邊上以1厘米/秒的速度向 移動(dòng),點(diǎn) 從點(diǎn) 開(kāi)始,在 邊上以2厘米/秒的速度向點(diǎn) 移動(dòng).如果點(diǎn) , 分別從點(diǎn) , 同時(shí)出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長(zhǎng)度改為7cm,對(duì)本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號(hào)化,設(shè)定一個(gè)量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗(yàn)并作答(五)布置作業(yè)1、請(qǐng)欣賞一道借用蘇軾詩(shī)詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩(shī)詞(通過(guò)列方程,算出周瑜去世時(shí)的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個(gè)位三,個(gè)位平方與壽符,哪位學(xué)子算得快,多少年華屬周瑜?本題強(qiáng)調(diào)對(duì)古文化詩(shī)詞的閱讀理解,貫通數(shù)學(xué)的實(shí)際應(yīng)用。有兩種解題思路:枚舉法和方程法。
注意強(qiáng)調(diào)概念理解不到位的方面:① tanA是一個(gè)完整的符號(hào),它表示∠A的正切,記號(hào)里習(xí)慣省去角的符號(hào)“∠”,若用三個(gè)字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒(méi)有單位,它表示一個(gè)比值,即直角三角形中∠A的對(duì)邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過(guò)給出直角三角形的任兩邊的長(zhǎng),讓學(xué)生求∠A,∠B的正切及時(shí)強(qiáng)化學(xué)生對(duì)概念的3、正切函數(shù)的應(yīng)用理解通過(guò)實(shí)際問(wèn)題的解答進(jìn)一步了解梯子的傾斜程度、坡度與正切函數(shù)的關(guān)系;對(duì)學(xué)生進(jìn)行正切的變式訓(xùn)練,讓學(xué)生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習(xí)的安插注意梯度,讓不同的學(xué)生有不同的發(fā)展。4、最后小結(jié)本節(jié)課的知識(shí)要點(diǎn)及注意點(diǎn)五、達(dá)標(biāo)測(cè)試具體思路:把幾個(gè)問(wèn)題分為四個(gè)等級(jí),方便對(duì)學(xué)生的了解;通過(guò)評(píng)價(jià)讓學(xué)生對(duì)自己的學(xué)習(xí)也做到心中有數(shù)。
設(shè)計(jì)說(shuō)明:設(shè)計(jì)這組測(cè)驗(yàn)為了反饋學(xué)生學(xué)習(xí)情況,第1題較簡(jiǎn)單,也是為了讓提高學(xué)生學(xué)習(xí)士氣,體會(huì)到成功的快樂(lè);第2題稍微有點(diǎn)挑戰(zhàn)性,利用直角三角形外心位置規(guī)律解答,也滿足不同層次學(xué)生的不同需求.教師可們采用搶答方式調(diào)動(dòng)學(xué)生積極性,學(xué)生搶答,師生共同反饋答題情況,教師最后出示正確答案并做總結(jié)性評(píng)價(jià).環(huán)節(jié)十:布置作業(yè)課件演示: 拓展延伸1.思考:經(jīng)過(guò)4個(gè)(或4個(gè)以上的)點(diǎn)是不是一定能作圓?2.作業(yè):A層 課本118頁(yè)習(xí)題A組1,2,3; B層 習(xí)題B組.設(shè)計(jì)說(shuō)明:設(shè)計(jì)第1題的原因保證了知識(shí)的完整性,學(xué)生在探究完三個(gè)點(diǎn)作圓以后,肯定有一個(gè)思維延續(xù),不在同一直線上三個(gè)點(diǎn)確定一個(gè)圓,四個(gè)點(diǎn)又會(huì)怎樣?四個(gè)點(diǎn)又分共線和不共線兩種情況,不共線的四點(diǎn)作圓問(wèn)題又能用三點(diǎn)確定一個(gè)圓去解釋,本題既應(yīng)用了新學(xué)知識(shí),又給學(xué)生提供了更廣泛地思考空間.第2題,主要是讓學(xué)生進(jìn)一步鞏固新學(xué)知識(shí),規(guī)范解題步驟. 在作業(yè)設(shè)計(jì)時(shí),既面向全體學(xué)生,又尊重學(xué)生的個(gè)體差異,以掌握知識(shí)形成能力為主要目的.
(設(shè)計(jì)意圖:因?yàn)閳A中有關(guān)的點(diǎn)、線、角及其他圖形位置關(guān)系的復(fù)雜,學(xué)生往往因?qū)σ阎獥l件的分析不夠全面,忽視某個(gè)條件,某種特殊情況,導(dǎo)致漏解。采用小組討論交流的方式進(jìn)行要及時(shí)進(jìn)行小組評(píng)價(jià)。)(3) 議一議( 如圖,OA、OB、OC都是圓O的半徑∠AOB=2∠BOC, 求證:∠ACB=2∠BAC。)(設(shè)計(jì)意圖:通過(guò)練習(xí),使學(xué)生能靈活運(yùn)用圓周角定理進(jìn)行幾何題的證明,規(guī)范步驟,提高利用定理解決問(wèn)題的能力。)(三)說(shuō)小結(jié)首先,通過(guò)學(xué)生小組交流,談一談你有什么收獲。(提示學(xué)生從三方面入手:1、學(xué)到了知識(shí);2、掌握了哪些數(shù)學(xué)方法;3、體會(huì)到了哪些數(shù)學(xué)思想。)然后,教師引導(dǎo)小組間評(píng)價(jià)。使學(xué)生對(duì)本節(jié)內(nèi)容有一個(gè)更系統(tǒng)、深刻的認(rèn)識(shí),實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的飛躍。(四)、板書設(shè)計(jì)為了集中濃縮和概括本課的教學(xué)內(nèi)容,使教學(xué)重點(diǎn)醒目、突出、合理有序,以便學(xué)生對(duì)本課知識(shí)點(diǎn)有了完整清晰的印象。我只選擇了本節(jié)課的兩個(gè)知識(shí)點(diǎn)作為板書。
設(shè)計(jì)意圖這一組習(xí)題的設(shè)計(jì),讓每位學(xué)生都參與,通過(guò)學(xué)生的主動(dòng)參與,讓每一位學(xué)生有“用武之地”,深刻體會(huì)本節(jié)課的重要內(nèi)容和思想方法,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。4.回顧反思,拓展延伸(教師活動(dòng))引導(dǎo)學(xué)生進(jìn)行課堂小結(jié),給出下列提綱,并就學(xué)生回答進(jìn)行點(diǎn)評(píng)。(1)通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些判斷直線與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問(wèn)題?(學(xué)生活動(dòng))學(xué)生發(fā)言,互相補(bǔ)充。(教師活動(dòng))布置作業(yè)(1)書面作業(yè):P70練習(xí)8.4.41、2題(2)實(shí)踐調(diào)查:尋找圓與直線的關(guān)系在生活中的應(yīng)用。設(shè)計(jì)意圖通過(guò)讓學(xué)生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學(xué)生的實(shí)際,對(duì)課后的書面作業(yè)分為三個(gè)層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學(xué)生完成基本學(xué)習(xí)任務(wù)的同時(shí),在知識(shí)拓展時(shí)起激學(xué)生探究的熱情,讓每一個(gè)不同層次的學(xué)生都可以獲得成功的喜悅。
5、課本練習(xí):P129引導(dǎo)學(xué)生運(yùn)用隨機(jī)數(shù)表來(lái)模擬試驗(yàn)過(guò)程并給予解答。問(wèn)題2:有四個(gè)鬮,其中兩個(gè)分別代表兩件獎(jiǎng)品,四個(gè)人按順序依次抓鬮來(lái)決定這兩件獎(jiǎng)品的歸屬,先抓的人中獎(jiǎng)率一定大嗎?教法:可組織學(xué)生用試驗(yàn)的方法來(lái)說(shuō)明問(wèn)題,對(duì)于試驗(yàn)的結(jié)果是有說(shuō)服力的,很容易使學(xué)生相信摸獎(jiǎng)的次序?qū)χ歇?jiǎng)的概率沒(méi)有影響。問(wèn)題3:彩民甲研究了近幾期這種體育彩票的中獎(jiǎng)號(hào)碼,發(fā)現(xiàn)數(shù)字06和08出現(xiàn)的次數(shù)最多,他認(rèn)為,06和08是“幸運(yùn)號(hào)碼”,因此,他在所買的每一注彩票中都選上了06和08。你認(rèn)為他這樣做有道理嗎?教法說(shuō)明:要讓學(xué)生看到試驗(yàn)方法對(duì)試驗(yàn)結(jié)果的影響:1、 因?yàn)殚_(kāi)獎(jiǎng)用的36個(gè)球是均勻的、無(wú)差別的,所以每個(gè)號(hào)碼被選為中獎(jiǎng)號(hào)碼的可能性是一樣的,不存在“幸運(yùn)號(hào)碼”。
想一想:為什么在師生猜拳中老師一直說(shuō)“5”能贏?為什么選擇和多的那隊(duì)沒(méi)勝,而選擇和少的那隊(duì)卻勝了?選擇可能性大的是不是每次一定能贏?選擇可能性小是不是每一次一定都輸?(至此,本節(jié)課到了一個(gè)升華層次,學(xué)生通過(guò)互動(dòng)游戲、自主探究、討論分析,從而揭示了“猜拳游戲”中的秘密,對(duì)“可能性”的理解達(dá)到了一個(gè)更高水平,有效地完成了本課重難點(diǎn)教學(xué)。)(4)實(shí)踐驗(yàn)證。實(shí)踐驗(yàn)證理論。再一次組織學(xué)生有目的地猜和,進(jìn)行實(shí)踐驗(yàn)證。讓理論與實(shí)踐有機(jī)的結(jié)合(三)拓展創(chuàng)新,內(nèi)化提升。兒童用品商店將要舉行促銷活動(dòng),凡到商店購(gòu)物的顧客都可參加《轉(zhuǎn)盤轉(zhuǎn)轉(zhuǎn)樂(lè)》活動(dòng)。每位顧客可轉(zhuǎn)兩次,用兩次指針?biāo)笖?shù)相加得到一個(gè)和,不同的和能得到相應(yīng)的獎(jiǎng)項(xiàng)。
師:同學(xué)們真聰明,小精靈的問(wèn)題回答出來(lái)了,現(xiàn)在就讓我們一起走進(jìn)兒童樂(lè)園吧。(出示課件)請(qǐng)大家注意觀察,兒童樂(lè)園中都有哪些景點(diǎn)?師:從兒童樂(lè)園出發(fā)經(jīng)過(guò)百鳥(niǎo)園去猴山一共有幾條路?請(qǐng)同學(xué)們仔細(xì)觀察:從兒童樂(lè)園到百鳥(niǎo)園有幾條路?從百鳥(niǎo)園去猴山有幾條路?(生回答。)師:我們給這5條路分別標(biāo)上序號(hào)。(課件演示)現(xiàn)在請(qǐng)同學(xué)們想一想從兒童樂(lè)園的入口經(jīng)過(guò)百鳥(niǎo)園到達(dá)猴山一共有幾條路線?請(qǐng)同學(xué)們把答案寫在記錄紙上。(生匯報(bào)。)師:路線設(shè)計(jì)好了,讓我們一起到猴山看一看可愛(ài)的小猴子吧?。ǚ藕锷降匿浵?。)師:看,它們是一對(duì)著名的動(dòng)物小明星,會(huì)演雜技的小猴寶寶和貝貝,你們想和它們照相留念嗎?生:想。師:好!那我們每個(gè)人都和寶寶、貝貝各照一張相片,同學(xué)們想一想,我們?nèi)?0個(gè)人一共要照多少?gòu)埾嗥瑑耗兀?/p>
課題序號(hào) 授課班級(jí) 授課課時(shí)2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點(diǎn),會(huì)用符號(hào)表示點(diǎn)、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會(huì)應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會(huì)用斜二測(cè)畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點(diǎn)用適當(dāng)?shù)姆?hào)表示點(diǎn)、線、面之間的關(guān)系;會(huì)用斜二測(cè)畫法畫立體圖形的直觀圖教學(xué)難點(diǎn)從平面幾何向立體幾何的過(guò)渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動(dòng)手畫,動(dòng)腦想,但立體幾何的語(yǔ)言及想象能力差
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。