提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

平行線的性質(zhì)定理和判定定理教案教學設(shè)計

  • 人教A版高中數(shù)學必修一對數(shù)函數(shù)的圖像和性質(zhì)教學設(shè)計(1)

    人教A版高中數(shù)學必修一對數(shù)函數(shù)的圖像和性質(zhì)教學設(shè)計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。

  • 人教A版高中數(shù)學必修二古典概型和概率的基本性質(zhì)教學設(shè)計

    人教A版高中數(shù)學必修二古典概型和概率的基本性質(zhì)教學設(shè)計

    新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。

  • 人教A版高中數(shù)學必修一等式性質(zhì)與不等式性質(zhì)教學設(shè)計(2)

    人教A版高中數(shù)學必修一等式性質(zhì)與不等式性質(zhì)教學設(shè)計(2)

    等式性質(zhì)與不等式性質(zhì)是高中數(shù)學的主要內(nèi)容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應(yīng),有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大小. 3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學設(shè)計

    課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學生的空間想象能力教學重點用適當?shù)姆柋硎军c、線、面之間的關(guān)系;會用斜二測畫法畫立體圖形的直觀圖教學難點從平面幾何向立體幾何的過渡,培養(yǎng)學生的空間想象能力.更新補充 刪節(jié)內(nèi)容 課外作業(yè) 教學后記能動手畫,動腦想,但立體幾何的語言及想象能力差

  • 北師大初中數(shù)學九年級上冊矩形的判定2教案

    北師大初中數(shù)學九年級上冊矩形的判定2教案

    2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)

  • 北師大初中數(shù)學九年級上冊矩形的判定1教案

    北師大初中數(shù)學九年級上冊矩形的判定1教案

    在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書設(shè)計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關(guān)問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.

  • 北師大初中數(shù)學九年級上冊菱形的判定2教案

    北師大初中數(shù)學九年級上冊菱形的判定2教案

    方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形

  • 北師大初中數(shù)學九年級上冊菱形的判定1教案

    北師大初中數(shù)學九年級上冊菱形的判定1教案

    (1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.

  • 人教版高中數(shù)學選修3二項式系數(shù)的性質(zhì)教學設(shè)計

    人教版高中數(shù)學選修3二項式系數(shù)的性質(zhì)教學設(shè)計

    1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教A版高中數(shù)學必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學設(shè)計(2)

    人教A版高中數(shù)學必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學設(shè)計(2)

    本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導(dǎo)公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點等);5.能利用性質(zhì)解決一些簡單問題. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學運算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學建模:讓學生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點:應(yīng)用正、余弦函數(shù)的性質(zhì)來求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對稱性.

  • 人教A版高中數(shù)學必修一正切函數(shù)的圖像與性質(zhì)教學設(shè)計(2)

    人教A版高中數(shù)學必修一正切函數(shù)的圖像與性質(zhì)教學設(shè)計(2)

    本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應(yīng)用.數(shù)學學科素養(yǎng)1.數(shù)學抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學運算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學建模:讓學生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點:能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應(yīng)用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.

  • 北師大初中九年級數(shù)學下冊切線的判定及三角形的內(nèi)切圓教案

    北師大初中九年級數(shù)學下冊切線的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

  • 頻率的穩(wěn)定性教案教學設(shè)計

    頻率的穩(wěn)定性教案教學設(shè)計

    活動內(nèi)容:教師首先讓學生回顧學過的三類事件,接著讓學生拋擲一枚均勻的硬幣,硬幣落下后,會出現(xiàn)正面朝上、正面朝下兩種情況,你認為正面朝上和正面朝下的可能性相同嗎?(讓學生體驗數(shù)學來源于生活)?;顒幽康模菏箤W生回顧學過的三類事件,并由擲硬幣游戲培養(yǎng)學生猜測游戲結(jié)果的能力,并從中初步體會猜測事件可能性。讓學生體會猜測結(jié)果,這是很重要的一步,我們所學到的很多知識,都是先猜測,再經(jīng)過多次的試驗得出來的。而且由此引出猜測是需通過大量的實驗來驗證。這就是我們本節(jié)課要來研究的問題(自然引出課題)。

  • 數(shù)據(jù)的整理教案教學設(shè)計

    數(shù)據(jù)的整理教案教學設(shè)計

    一、課前準備師:同學們想一想,你同父母一起去商店買衣服時,衣服上的號碼都有哪些,標志是什么?學生:我看到有些衣服上標有M、S、L、XL、XXL等號碼.但我不清楚代表的具體范圍,適合什么人穿,但肯定與身高、胖瘦有關(guān).師:這位同學很善動腦,也愛觀察.S代表最小號,身高在150~155cm的人適合穿S號.M號適合身高在155~160cm的人著裝……廠家做衣服訂尺寸也并不是按所有人的尺寸定做,而是按某個范圍分組批量生產(chǎn).你覺得這種生產(chǎn)方法有什么優(yōu)點?學校要為同學們訂制校服,為此小明調(diào)查了他們班50名同學的身高,結(jié)果(單位cm).如下

  • 北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設(shè)計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時,應(yīng)結(jié)合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.

  • 北師大初中數(shù)學九年級上冊正方形的判定2教案

    北師大初中數(shù)學九年級上冊正方形的判定2教案

    三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學九年級上冊正方形的判定1教案

    北師大初中數(shù)學九年級上冊正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學九年級上冊正方形的判定2教案

    北師大初中數(shù)學九年級上冊正方形的判定2教案

    三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學九年級上冊正方形的判定1教案

    北師大初中數(shù)學九年級上冊正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 《賣懶》教學設(shè)計教案

    《賣懶》教學設(shè)計教案

    1.制作紅燈籠師:(展示漂亮的燈籠)小朋友們想不想自己親手制作一個呢?生:好呀師:那小朋友們知道制作燈籠需要什么材料嗎?生:彩紙、剪刀...師:沒錯,那老師先來展示一下怎么制作燈籠吧?。ㄕ故就旰?,開始讓小朋友兩兩組合共同制作)2.制作燈籠剪紙師:小朋友們,剛剛是不是已經(jīng)制作燈籠了呀?下面我們進行一個更好玩的環(huán)節(jié)?生:好呀好呀!師:那我先來展示一下咯,小朋友們別眨眼呀!(展示完后,開始讓小朋友們獨立完成)小結(jié):通過制作共同合作制作燈籠與獨自完成燈籠剪影,不僅使他們更能感知燈籠的形狀,更能提高小朋友們的動手能力和思考力。

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!