四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數形結合方法的重要性.學生若出現(xiàn)解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結內容:總結本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數的表達式,在確定一次函數的表達式時可以用待定系數法,即先設出解析式,再根據題目條件(根據圖象、表格或具體問題)求出 , 的值,從而確定函數解析式。其步驟如下:(1)設函數表達式;(2)根據已知條件列出有關k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數學思想方法:數形結合、方程的思想.目的:引導學生小結本課的知識及數學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據學生情況適當增減,但難度不應過大.
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學生的識圖能力,可根據學生情況和上課情況適當調整。說明:練習注意了問題的梯度,由淺入深,一步步引導學生從不同的圖象中獲取信息,對同學的回答,教師給予點評,對回答問題暫時有困難的同學,教師應幫助他們樹立信心。第四環(huán)節(jié):課時小結內容:本節(jié)課我們學習了一次函數圖象的應用,在運用一次函數解決實際問題時,可以直接從函數圖象上獲取信息解決問題,當然也可以設法得出各自對應的函數關系式,然后借助關系式完全通過計算解決問題。通過列出關系式解決問題時,一般首先判斷關系式的特征,如兩個變量之間是不是一次函數關系?當確定是一次函數關系時,可求出函數解析式,并運用一次函數的圖象和性質進一步求得我們所需要的結果.
學習目標1.掌握兩個一次函數圖像的應用;(重點)2.能利用函數圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關系如圖所示.請你根據圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數圖象如下所示,結合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數,即可求得函數的解析式;(2)利用(1)得到的兩個解析式,結合二次函數與一次函數的性質分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結:本題考查了二次函數的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數,是解決問題的關鍵.
五、課堂設計理念本節(jié)課著力體現(xiàn)以下幾個方面:1、突出問題的應用意識。在各個環(huán)節(jié)的安排上都設計成一個個問題,使學生能圍繞問題展開討思考、討論,進行學習。2、體現(xiàn)學生的主體意識。讓學生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術方法到代數方法是數學的進步;讓學生通過合作交流,得出問題的不同解法;讓學生對一節(jié)課的學習內容、方法、注意點等進行歸納。3、體現(xiàn)學生思維的層次性。教師首先引導學生嘗試用算術方法解決問題,然后再引導學生列出含未知數的式了,尋找相等關系列出方程,在尋找相等關系、設未知數及作業(yè)的布置等環(huán)節(jié)中都注意了學生思維的層次性。4、滲透建模思想。把實際問題中的數量關系用方程形式表示出來,就是建立一種數學模型,教師有意識地按設未知數、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出方程模型的能力。
解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
【教學目標】(一)教學知識點能夠利用描點法作出函數 的圖象,并根據圖象認識和理解二次函數 的性質;比較兩者的異同.(二)能力訓練要求:經歷探索二次函數 圖象的作法和性質的過程,獲得利用圖象研究函數性質的經驗.(三)情感態(tài)度與價值觀:通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數性質的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質。難點:描點法畫y=ax2的圖象,體會數與形的相互聯(lián)系。 【導學流程】 一、自主預習(用時15分鐘)1.創(chuàng)設教學情境我們在教學了正比例函數、一次函數、反比例函數的定義后,都借助圖像研究了它們的性質.而上節(jié)課我們所學的二次函數的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數y=x2入手去研究
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數和一次函數的圖象在同一直角坐標系中,一次函數y=ax+c和二次函數y=ax2+c的圖象大致為()解析:∵一次函數和二次函數都經過y軸上的點(0,c),∴兩個函數圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數的圖象開口向上,一次函數的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數的圖象開口向下,一次函數的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結:熟記一次函數y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數的有關性質(開口方向、對稱軸、頂點坐標等)是解決問題的關鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數y=ax2+c的圖象與三角形的綜合
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數關系式表示?問題2:如何畫出這樣的函數圖象?二、合作探究探究點:二次函數y=x2和y=-x2的圖象與性質【類型一】 二次函數y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數的圖象:(1)y=x2;(2)y=-x2.根據圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結:畫拋物線y=x2和y=-x2的圖象時,還可以根據它的對稱性,先用描點法描出拋物線的一側,再利用對稱性畫另一側.
1.使學生掌握用描點法畫出函數y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經歷探索二次函數y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質的過程,理解二次函數y=ax2+bx+c的性質。用描點法畫出二次函數y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數y=ax2+bx+c(a≠0)的性質以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數y=-4(x-2)2+1圖象與函數y=-4x2的圖象有什么關系?(函數y=-4(x-2)2+1的圖象可以看成是將函數y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結:解答本題的關鍵是注意審題,將實際問題轉化為求函數問題,培養(yǎng)自己利用數學知識解答實際問題的能力.三、板書設計二次函數y=ax2+bx+c的圖象與性質1.二次函數y=ax2+bx+c的圖象與性質2.二次函數y=ax2+bx+c的應用
(3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結:解決本題的關鍵是根據圖形特點選取一個合適的參數表示它們,得出關系式后運用函數性質來解.三、板書設計二次函數y=a(x-h(huán))2+k的圖象與性質1.二次函數y=a(x-h(huán))2+k的圖象與性質2.二次函數y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關系3.二次函數y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.
解析:水是生命之源,節(jié)約水資源是我們每個居民都應有的意識.題中給出假如每人浪費一點水,當人數增多時,將是一個非常驚人的數字,100萬人每天浪費的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結:從實際問題入手讓學生體會科學記數法的實際應用.題中沒有直接給出數據,應先計算,再表示.探究點二:將用科學記數法表示的數轉換為原數已知下列用科學記數法表示的數,寫出原來的數:(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數點向右移動4位即可;(2)將6.070的小數點向右移動5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結:將科學記數法a×10n表示的數,“還原”成通常表示的數,就是把a的小數點向右移動n位所得到的數.三、板書設計借助身邊熟悉的事物進一步體會大數,積累數學活動經驗,發(fā)展數感、空間感,培養(yǎng)學生自主學習的能力.
解析:本題是要求兩個未知數,即3和4的權.所以應把平均數與方程組綜合起來,利用平均數的定義來列方程,組成方程組求解.解:設投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結:利用平均數的公式解題時,要弄清數據及相應的權,避免出錯.三、板書設計平均數算術平均數:x=1n(x1+x2+…+xn)加權平均數:x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術平均數和加權平均數的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關平均數問題的解決,提升學生的數學應用能力.通過解決實際問題,體會數學與社會生活的密切聯(lián)系,了解數學的價值,增進學生對數學的理解和增加學好數學的信心.
探究點三:函數的圖象洗衣機在洗滌衣服時,每漿洗一遍都經歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內無水).在這三個過程中,洗衣機內的水量y(升)與漿洗一遍的時間x(分)之間函數關系的圖象大致為()解析:∵洗衣機工作前洗衣機內無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結:本題考查了對函數圖象的理解能力,看函數圖象要理解兩個變量的變化情況.三、板書設計函數定義:自變量、因變量、常量函數的關系式三種表示方法函數值函數的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數學活動.在活動中歸納、概括出函數的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數概念的理解.
解:有理數:3.14,-53,0.58··,-0.125,0.35,227;無理數:-5π,5.3131131113…(相鄰兩個3之間1的個數逐次加1).方法總結:有理數與無理數的主要區(qū)別.(1)無理數是無限不循環(huán)小數,而有理數可以用有限小數或無限循環(huán)小數表示.(2)任何一個有理數都可以化為分數形式,而無理數則不能.探究點二:借助計算器用“夾逼法”求無理數的近似值正數x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數x各位上的數字的方法:(1)估計x的整數部分,看它在哪兩個連續(xù)整數之間,較小數即為整數部分;(2)確定x的十分位上的數,同樣尋找它在哪兩個連續(xù)整數之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數,從而確定x的值.
方法總結:描述一個代數式的意義,可以從字母本身出發(fā)來描述字母之間的數量關系,也可以聯(lián)系生活實際或幾何背景賦予其中字母一定的實際意義加以描述.探究點四:根據實際問題列代數式用代數式表示下列各式:(1)王明同學買2本練習冊花了n元,那么買m本練習冊要花多少元?(2)正方體的棱長為a,那么它的表面積是多少?體積呢?解析:(1)根據買2本練習冊花了n元,得出買1本練習冊花n2元,再根據買了m本練習冊,即可列出算式.(2)根據正方體的棱長為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習冊花了n元,∴買1本練習冊花n2元,∴買m本練習冊要花12mn元;(2)∵正方體的棱長為a,∴它的表面積是6a2;它的體積是a3.方法總結:此題考查了列代數式,用到的知識點包括正方體的表面積公式和體積公式,根據題意列出式子是解本題的關鍵.
將有理數-2,+1,0,-212,314在數軸上表示出來,并用“<”號連接各數.解析:利用數軸上的點來表示相應的數,再利用它們對應點的位置來判斷各數的大小.解:如圖:由數軸可知-212<-2<0<+1<314.方法總結:一般地,數軸上多個數的大小比較,可利用“數軸上兩個點表示的數,右邊的總比左邊的大”這一性質進行比較.探究點四:點在數軸上的移動問題點A為數軸上表示-2的動點,當點A沿數軸移動4個單位長度到點B時,點B所表示的有理數為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點A為數軸上表示-2的動點,①當點A沿數軸向左移動4個單位長度時,點B所表示的有理數為-6;②當點A沿數軸向右移動4個單位長度時,點B所表示的有理數為2.故選C.方法總結:點A在數軸上移動要注意分兩種情況:一個向左,一個向右,不要漏掉其中的一種情況.
16.已知甲組有28人,乙組有20人,則下列調配方法中,能使一組人數為另一組人數的一半的是( ).A.從甲組調12人去乙組 B.從乙組調4人去甲組C.從乙組調12人去甲組 D.從甲組調12人去乙組,或從乙組調4人去甲組17.足球比賽的規(guī)則為勝一場得3分,平一場得1分,負一場是0分,一個隊打了14場比賽,負了5場,共得19分,那么這個隊勝了( )場.A.3 B.4 C.5 D.618.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?( )A.3個 B.4個 C.5個 D.6個三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補空白,需要配多大尺寸的圖片.
一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結果是:1千克土豆換0.5千克蘋果.當稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學的有關數學知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設土豆重a千克,籃子重b千克,則應換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結:體現(xiàn)了數學在生活中的運用.解決問題的關鍵是讀懂題意,找到所求的量之間的關系.三、板書設計數學教學要緊密聯(lián)系學生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學、練習等方式鞏固相關知識.教學中應激發(fā)學生主動參與學習的積極性,培養(yǎng)學生思維的靈活性.