【說學法】1.合作學習法。以學生為本、小組合作、生生互助的形式來學習,培養(yǎng)學生在合作中取長補短,互幫互助的合作精神。 同組一起把生字讀兩遍。然后互相檢查看看是否讀準字音。并說說自已是怎樣記住哪個字的,讓學生感受合作學習的快樂。 2.朗讀比賽法。為了達到正確、流利地朗讀課文的目的。讓學生利用多種形式讀。如:同桌對讀,個別讀,小組讀等方法,貫穿始終,讀中悟,悟中讀,收到以讀代講以讀悟情的效果。 3.自主評價法。通過讓學生自主評價,培養(yǎng)學生傾聽,欣賞以及表達能力。從而使低年級學生從小養(yǎng)成學習語文的良好習慣。 五、說教學過程(一)謎語導入,揭示課題1.出示謎語,引出“影子”。? 你有我有他也有,黑身黑腿黑黑頭。燈前月下跟你走,就是從來不開口。? (設(shè)計意圖:猜謎語是小學生喜歡的活動。這個謎語不僅引出了課題,而且呈現(xiàn)了本課要學習的生字,可以給學生一個初步的認識。)
一、說教材 《灰雀》是統(tǒng)編教材小學語文三年級上冊第八單元的一篇精讀課文,這篇課文講述的是列寧、灰雀和一個孩子之間的故事。列寧在公園里尋找三只惹人喜愛的灰雀當中的一只時,遇到了將灰雀捉走的男孩,經(jīng)過交談,受到感動的男孩將灰雀放了回來。這個故事體現(xiàn)了列寧善解人意,對男孩的尊重、愛護以及男孩的誠實和天真。 通過語言和行動來揭示人物的內(nèi)心世界,展現(xiàn)事件的發(fā)展進程,是本篇課文在表達上的主要特點。男孩的語言和行為已經(jīng)告訴列寧,灰雀的消失與他有關(guān);如何使孩子認識到將灰雀捉走是錯誤的從而自愿將小鳥放回來,需要循循善誘。列寧沒有問孩子是否將灰雀捉走,也未進行任何說教,而是借助一句“多好的灰雀呀,可惜再也飛不回來了”的感嘆,使孩子內(nèi)心受到震動,從而認識和改正自己的錯誤。在整個事件中,處處可以發(fā)現(xiàn)列寧善于觀察對方的言語、行動,既不傷害對方的自尊心,又能使對方認識到錯誤的巧妙的教育方法,同時,也可以體會到列寧對兒童人格的尊重和愛護。 選編這篇課文的意圖,一是要學生認識到列寧對兒童的愛護;二是要通過對人物語言和神態(tài)的描寫體會人物的心理活動。同時,學生還可以受到愛護鳥類等動物的教育。
一、說教材: 《花之歌》是紀伯倫的散文詩集《淚與笑》中的一首,詩人用花的語言來敘述大自然的話語,文中盡顯“紀伯倫風格”中的輕柔、凝練、雋秀與清新。詩人通過花語的傾心流露,構(gòu)建了一幅大自然活生生的圖畫,圖畫中有詩意的浪漫,也有現(xiàn)實的真實,如:“我是諸元素之女:冬將我孕育,春使我開放,夏讓我成長,秋令我昏昏睡去”寫出了花的成長與芬芳。而“我是親友之間交往的禮品,我是婚禮的冠冕,我是生者贈予死者最后的祭獻”就袒露出了花的凋謝命運,都說紀伯倫的詩有著哲理,寓意深邃,從這就可以看出,詩人是用詩意的敘述和思考的敏銳來書寫人生的。 二、說教學目標 1.知識目標: (1)理解、積累本課出現(xiàn)的重點詞語。 (2)了解紀伯倫和其藝術(shù)風格。 (3)了解課文內(nèi)容,領(lǐng)悟詩中擬人形象的情感內(nèi)涵。
一、說教材 《盼》是統(tǒng)編教材小學語文六年級上冊第五單元地第二篇課文,作者是當代女作家鐵凝。課文主要講地是媽媽給“我”買了一件新雨衣,從那以后,“我”每天總是盼著下雨。一天放學后,終于掉了雨點兒,“我”想出各種借口想穿上雨衣到街上去,都沒有實現(xiàn)。第二天早晨,“我”背著書包上街,突然掉下了雨點兒?!拔摇迸d奮地跑回家讓媽媽幫“我”穿上新雨衣,走在街上,滴答地雨滴讓“我”欣喜不已。課文用生動、準確地語言,恰如其分地表達了想要穿上雨衣地“我”對雨天地渴盼、穿著雨衣在在街上行走地快樂。課文為我們呈現(xiàn)了一幅美好地童年生活畫面,文中“我”心底地渴盼更能觸動孩子們地心靈。同時,文中運用地多種描寫方法也能讓學生在習作上受到啟發(fā)。 二、說教學目標 1.會寫12個生字,會寫“雨衣、袖筒、斗篷”等 詞語。 2.能把握課文內(nèi)容,知道文章是通過哪些事例來寫“盼”地。
五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測:檢測:晚上,小華在馬路的一側(cè)散步,對面有一路燈,當小華筆直地往前走時,他在這盞路燈下的影子也隨之向前移動.小華頭頂?shù)挠白铀?jīng)過的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁習題5.1八、板書設(shè)計投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個話題,接著經(jīng)歷實踐、探索的過程,掌握了中心投影的含義,進一步根據(jù)燈光光線的特點,由實物與影子來確定路燈的位置,能畫出在同一時刻另一物體的影子,還要求大家不僅要自己動手實踐,還要和同伴互相交流.同時要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實踐操作能力,合作交流能力,語言表達能力.
教學目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會根據(jù)三視圖描述原幾何體。教學重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法一、實物觀察、空間想像觀察:請同學們拿出事先準備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談?wù)勀愕目捶āM卣梗寒斈闶种械膬蓚€直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標為(-53,-3).三、板書設(shè)計反比例函數(shù)的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于 第一、三象限內(nèi)當k<0時,兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進行認識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學生探索反比例函數(shù)的性質(zhì)提供了思維活動的空間.
如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設(shè)計反比例函數(shù)的性質(zhì)性質(zhì)當k>0時,在每一象限內(nèi),y的值隨x的值的增大而減小當k<0時,在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進行語言表述,訓練學生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數(shù)學學習活動中,增強他們對數(shù)學學習的好奇心與求知欲.
因為反比例函數(shù)的圖象經(jīng)過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學中壓強、壓力與受力面積之間的關(guān)系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關(guān)系,從而進一步建立反比例函數(shù)模型.三、板書設(shè)計反比例函數(shù)的應用實際問題與反比例函數(shù)反比例函數(shù)與其他學科知識的綜合經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識.通過反比例函數(shù)在其他學科中的運用,體驗學科整合思想.
解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
三、典型例題,應用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍)(紅2,藍)(藍,紅1)(藍,紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉(zhuǎn)盤做“配紫色”游戲,每個轉(zhuǎn)盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設(shè)計兩個轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時應注意什么?2. 你還有哪些收獲和疑惑?
觀察 和 的圖象,它們有什么相同點和不同點?學生小組討論,弄清上述兩個圖象的異同點。交流討論反比 例函數(shù)圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數(shù)圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習課本隨堂練習 [探索與交流]對于函數(shù) , 兩支曲線分別位于哪個象限內(nèi)?對于函數(shù) ,兩支曲線又分別位于哪個象限內(nèi)?怎樣區(qū)別這兩個函數(shù)的圖象。學生分四人小組全班探索。 三、課堂總結(jié)在進行函數(shù)的列表,描點作圖的活動中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當k>0時,它的圖像位于一、三象限內(nèi),當k<0時,它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對稱圖形,又是軸對稱圖形。
補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設(shè)計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關(guān)系.通過具體活動,積累學生的觀察、想象物體投影的經(jīng)驗,發(fā)展學生的動手實踐能力、數(shù)學思考能力和空間觀念.
教學目標:1.經(jīng)歷由實物抽象出幾何體的過程,進一步發(fā)展空間觀念。2.會畫圓柱、圓錐、球的三視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會根據(jù)三視圖描述原幾何體。教學重點:掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法教學過程設(shè)計一、實物觀察、空間想像設(shè)置:學生利用準備好的大小相同的正方形方塊,搭建一個立體圖形,讓同學們畫出三視圖。而后,再要求學生利用手中12塊正方形的方塊實物,搭建2個立體圖形,并畫出它們的三視圖。學生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點Q時在路燈AD下影子的長度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對應線段的長度.三、板書設(shè)計投影的概念與中心投影投影的概念:物體在光線的照射下,會 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點光源的光線形成的 投影變化規(guī)律影子是生活中常見的現(xiàn)象,在探索物體與其投影關(guān)系的活動中,體會立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學生的空間觀念.通過在燈光下擺弄小棒、紙片,體會、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學生觀察問題、分析問題的能力.