(3)移項得-4x=4+8,合并同類項得-4x=12,系數(shù)化成1得x=-3;(4)移項得1.3x+0.5x=0.7+6.5,合并同類項得1.8x=7.2,系數(shù)化成1得x=4.方法總結(jié):將所有含未知數(shù)的項移到方程的左邊,常數(shù)項移到方程的右邊,然后合并同類項,最后將未知數(shù)的系數(shù)化為1.特別注意移項要變號.探究點三:列一元一次方程解應(yīng)用題把一批圖書分給七年級某班的同學(xué)閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個班有多少學(xué)生?解析:根據(jù)實際書的數(shù)量可得相應(yīng)的等量關(guān)系:3×學(xué)生數(shù)量+20=4×學(xué)生數(shù)量-25,把相關(guān)數(shù)值代入即可求解.解:設(shè)這個班有x個學(xué)生,根據(jù)題意得3x+20=4x-25,移項得3x-4x=-25-20,合并同類項得-x=-45,系數(shù)化成1得x=45.答:這個班有45人.方法總結(jié):列方程解應(yīng)用題時,應(yīng)抓住題目中的“相等”、“誰比誰多多少”等表示數(shù)量關(guān)系的詞語,以便從中找出合適的等量關(guān)系列方程.
方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.探究點三:工程問題一個道路工程,甲隊單獨施工9天完成,乙隊單獨做24天完成.現(xiàn)在甲乙兩隊共同施工3天,因甲另有任務(wù),剩下的工程由乙隊完成,問乙隊還需幾天才能完成?解析:首先設(shè)乙隊還需x天才能完成,由題意可得等量關(guān)系:甲隊干三天的工作量+乙隊干(x+3)天的工作量=1,根據(jù)等量關(guān)系列出方程,求解即可.解:設(shè)乙隊還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊還需13天才能完成.方法總結(jié):找到等量關(guān)系是解決問題的關(guān)鍵.本題主要考查的等量關(guān)系為:工作效率×工作時間=工作總量,當(dāng)題中沒有一些必須的量時,為了簡便,應(yīng)設(shè)其為1.三、板書設(shè)計“希望工程”義演題目特點:未知數(shù)一般有兩個,等量關(guān)系也有兩個解題思路:利用其中一個等量關(guān)系設(shè)未知數(shù),利用另一個等量關(guān)系列方程
從而為列方程找等量關(guān)系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個小組,為增強小組討論結(jié)果的展示起到了較好的作用.環(huán)節(jié)3中通過讓學(xué)生自己設(shè)計表格為討論的得出起到輔助作用.2.相信學(xué)生并為學(xué)生提供充分展示自己的機會本節(jié)課的設(shè)計中,通過學(xué)生多次的動手操作活動,引導(dǎo)學(xué)生進(jìn)行探索,使學(xué)生確實是在舊知識的基礎(chǔ)上探求新內(nèi)容,探索的過程是沒有難度的任何學(xué)生都會動手操作,每個學(xué)生都有體會的過程,都有感悟的可能,這種形式讓學(xué)生切身去體驗問題的情景,從而進(jìn)一步幫助學(xué)生理解比較復(fù)雜的問題,再把實際問題抽象成數(shù)學(xué)問題.3.注意改進(jìn)的方面本節(jié)課由于構(gòu)題新穎有趣,所以一開始就抓住了學(xué)生的求知欲望,課堂氣氛活躍,討論問題積極主動.但由于學(xué)生發(fā)表自己的想法較多,使得教學(xué)時間不能很好把握,導(dǎo)致課堂練習(xí)時間緊張,今后予以改進(jìn).
1:甲、乙、丙三個村莊合修一條水渠,計劃需要176個勞動力,由于各村人口數(shù)不等,只有按2:3:6的比例攤派才較合理,則三個村莊各派多少個勞動力?2:某校組織活動,共有100人參加,要把參加活動的人分成兩組,已知第一組人數(shù)比第二組人數(shù)的2倍少8人,問這兩組人數(shù)各有多少人?目的:檢測學(xué)生本節(jié)課掌握知識點的情況,及時反饋學(xué)生學(xué)習(xí)中存在的問題.實際活動效果:從學(xué)生做題的情況看,大部分學(xué)生都能正確地列出方程,但其中一部分人并不能有意識地用“列表格”法來分析問題,因此,教師仍需引導(dǎo)他們能學(xué)會用“列表格”這個工具,有利于以后遇上復(fù)雜問題能很靈活地得到解決.六、歸納總結(jié):活動內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識:1. 兩個未知量,兩個等量關(guān)系,如何列方程;2. 尋找中間量;3. 學(xué)會用表格分析數(shù)量間的關(guān)系.
解:設(shè)截取圓鋼的長度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關(guān)系.探究點三:面積變化問題將一個長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設(shè)鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
因為x3表示手機部數(shù),只能為正整數(shù),所以這種情況不合題意,應(yīng)舍去.綜上所述,商場共有兩種進(jìn)貨方案.方案1:購甲型號手機30部,乙型號手機10部;方案2:購甲型號手機20部,丙型號手機20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進(jìn)貨方案獲利最多.方法總結(jié):仔細(xì)讀題,找出相等關(guān)系.當(dāng)用含未知數(shù)的式子表示相等關(guān)系的兩邊時,要注意不同型號的手機數(shù)量和單價要對應(yīng).三、板書設(shè)計增收節(jié)支問題分析解決列二元一次方程,組解決實際問題)增長率問題利潤問題利用圖表分析等量關(guān)系方案選擇通過問題的解決使學(xué)生進(jìn)一步認(rèn)識數(shù)學(xué)與現(xiàn)實世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學(xué)信息,愿意參與數(shù)學(xué)話題的研討,從中懂得數(shù)學(xué)的價值,逐步形成運用數(shù)學(xué)的意識;并且通過對問題的解決,培養(yǎng)學(xué)生合理優(yōu)化的經(jīng)濟意識,增強他們的節(jié)約和有效合理利用資源的意識.
答:書包單價92元,隨身聽單價360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價92元,隨身聽單價360元。2)在人民商場購買隨聲聽與書包各一樣需花費現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂??上然ìF(xiàn)金360元購買隨身聽,再利用得到的90元返券,加上2元現(xiàn)金購買書包,共花現(xiàn)金360+2=362(元)。因為362<400,所以也可以選擇在家樂福購買。因為362>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學(xué)習(xí)反思;(5分鐘,學(xué)生思考回答,不足的地方教師補充和強調(diào)。)
四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實際問題的方法。五、目標(biāo)檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學(xué)校計劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進(jìn)行對比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
探究點二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經(jīng)歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數(shù)學(xué)結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗,激發(fā)學(xué)生探索知識的興趣,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準(zhǔn)確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應(yīng)相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習(xí)2就是通過讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達(dá)到加深理解判定方法2的條件的目的的.
∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學(xué)知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
內(nèi)容:分式方程的解法及應(yīng)用——初三中考數(shù)學(xué)第一輪復(fù)習(xí)學(xué)習(xí)目標(biāo):1、熟練利用去分母化分式方程為整式方程2、熟練利用分式方程的解法解決含參數(shù)的分式方程的問題重點:分式方程的解法(尤其要理解“驗”的重要性)難點:含參數(shù)的分式方程問題預(yù)習(xí)內(nèi)容:1、觀看《分式方程的解法》《含參數(shù)分式方程增根問題》《解含參分式方程》視頻2、完成預(yù)習(xí)檢測
設(shè)計意圖:我運用了引導(dǎo)學(xué)生探究發(fā)現(xiàn)的教學(xué)方法,學(xué)生采用觀察比較、分類歸納、討論交流的學(xué)習(xí)方法。因為“質(zhì)數(shù)和合數(shù)”是學(xué)生在學(xué)習(xí)了因數(shù)和倍數(shù)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。因此我抓住新舊知識的連接點,讓學(xué)生找自己座號的因數(shù),從學(xué)生身邊熟悉的事物入手,喚起學(xué)生親切的情感,激發(fā)他們學(xué)習(xí)的興趣。學(xué)生是學(xué)習(xí)的主體,只有讓學(xué)生參與知識的形成過程,數(shù)學(xué)知識才會內(nèi)化學(xué)生自己的東西,四人小組討論交流就是讓學(xué)生在探討中提高學(xué)習(xí)的能力。5、科學(xué)總結(jié) 實戰(zhàn)練習(xí)(1)基本練習(xí)。完成“做一做”。 (2)強化練習(xí)。練習(xí)四第1、2題。 (3)綜合練習(xí)。1-80質(zhì)數(shù)表。驗證剛才的判斷是否正確。師:通過這節(jié)課的學(xué)習(xí),你又有了什么新的收獲? 你能幫甜甜解決箱子密碼的問題了嗎?
一、說教學(xué)內(nèi)容分?jǐn)?shù)的意義和性質(zhì)以及分?jǐn)?shù)的加、減運算教材115頁總復(fù)習(xí)以及教材118頁練習(xí)二十八第6~9題。二、說教學(xué)目標(biāo)1. 使學(xué)生進(jìn)一步理解和掌握分?jǐn)?shù)的意義及性質(zhì),并能解決一些問題,使學(xué)生進(jìn)一步理解同分母、異分母分?jǐn)?shù)加、減法的算理,掌握同分母、異分母分?jǐn)?shù)加、減法的計算方法。2.能熟練地進(jìn)行約分和通分,認(rèn)識約分、通分的重要性,教學(xué)過程中,培養(yǎng)學(xué)生分析概括的能力,并進(jìn)一步培養(yǎng)學(xué)生的計算能力。3.初步形成評價與反思的意識,滲透轉(zhuǎn)化的數(shù)學(xué)思想和方法。培養(yǎng)學(xué)生合作學(xué)習(xí)的能力,提高學(xué)生互幫互助的思想品質(zhì)。三、說教學(xué)重點、難點重點:分?jǐn)?shù)的意義及基本性質(zhì)的應(yīng)用。難點:進(jìn)一步理解同分母、異分母分?jǐn)?shù)加、減法的算理,培養(yǎng)學(xué)生的簡算意識和應(yīng)用能力。
二、教學(xué)目標(biāo)分析新課標(biāo)指出,教學(xué)目標(biāo)應(yīng)包括知識與技能,過程與方法,情感態(tài)度與價值觀這三個方面,而這三個方面又是一個緊密聯(lián)系的有機整體,學(xué)生學(xué)會知識與技能的過程同時成為學(xué)會學(xué)習(xí),形成正確價值觀的過程,這告訴我們,在教學(xué)中應(yīng)以知識與技能為主線,滲透情感態(tài)度價值觀,并把兩者充分體現(xiàn)在過程與方法中。借此,我將三維目標(biāo)進(jìn)行整合,確定本節(jié)課的教學(xué)目標(biāo)為:1、從操作活動中理解因數(shù)和倍數(shù)意義,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。 2、培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義觀點。 3、通過主動探究,合作交流,培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
二、說教材《指南》里的典型性表現(xiàn)說:中班的孩子能對事物或現(xiàn)象進(jìn)行觀察和比較,發(fā)現(xiàn)其相同與不同,喜歡動手動腦。他們常常在游戲時進(jìn)行排列,比如拼插雪花片玩具,你會發(fā)現(xiàn)排列顏色是有規(guī)律的。積木搭建的小路,你也會發(fā)現(xiàn)小路石塊也是有規(guī)律的,這些都說明他們對排序感興趣。年齡層次方面,《小刺猬的項鏈》是幼兒園中班的下學(xué)期一節(jié)活動,幼兒的年齡大約都在4歲半—5歲。在生活經(jīng)驗方面,孩子們對排列有一定的生活經(jīng)驗積累,對周圍常見的生活場景有一定的觀察和比較;在知識方面,中班幼兒已經(jīng)積累和建立了有關(guān)物體在顏色、形體和大小等特征差異上的簡單排序的數(shù)學(xué)經(jīng)驗,可以更進(jìn)一步地學(xué)習(xí)按照物的多個特征和數(shù)量進(jìn)行不同的排序。在學(xué)習(xí)能力方面,吸納外部信息的能力強,會掌握和理解新知識。三、說活動目標(biāo)根據(jù)中班孩子的年齡特點和實際情況,我確立了認(rèn)知、技能、情感這三方面的目標(biāo)和重難點:(1)在欣賞與講述中理解繪本內(nèi)容同時鞏固間隔排序的經(jīng)驗。(2)學(xué)習(xí)簡單的按規(guī)律排序并大膽嘗試自編規(guī)律。(3)懂得并感受分享是一件快樂的事情。四、說重點難點規(guī)律排列的數(shù)學(xué)活動重點是:在欣賞與講述中理解繪本內(nèi)容同時鞏固間隔排序的經(jīng)驗。難點:學(xué)習(xí)簡單的按規(guī)律排序并大膽嘗試自編規(guī)律。
[活動目標(biāo)]1、讓幼兒認(rèn)識水的有關(guān)性質(zhì)及水的用途。2、萌發(fā)幼兒節(jié)約用水、保護水資源的意識。3、發(fā)展幼兒的觀察和語言表達(dá)能力,為汶河位于家鄉(xiāng)而自豪。 [活動準(zhǔn)備]1、請家長配合生活中注意節(jié)約用水并有意識引導(dǎo)幼兒節(jié)約用水。2、實驗用的小瓶、杯子、顏料、可樂、醋、透明的塑料細(xì)軟管。3、(1)被污染水的掛圖?! 。?)正在滴水的自來水管?! 。?)河里的魚、蝦、面臨死亡的掛圖。 ?。?)課前家長同幼兒參觀汶河。
教學(xué)準(zhǔn)備: 1、調(diào)查生活中浪費水資源的普遍現(xiàn)象。 2、搜集、制定一些節(jié)水措施?! 〗虒W(xué)過程: 一、利用謎語揭示課題。 1、主持人上場,神秘地說:“我讓大家猜個謎語,你們愿意嗎?” 主持人口述謎語: “雙手抓不起,一刀劈不開,煮飯和洗衣,都要請它來?!薄 《纳罱?jīng)驗入手,導(dǎo)入學(xué)習(xí)?! ?、生活中哪些事需要用水?你們家為何不用海水洗澡,洗碗,煮飯??.? 2、出示地球上海水與淡水的組成比例圖,初步了解地球上淡水資源的匱乏情況。看了這幅圖,你有什么想法? 3、地球上所有的淡水都可以拿來運用嗎?你知道有多少淡水可以拿來運用? 4、小結(jié)過渡,導(dǎo)入“游戲”。