分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學(xué)生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個(gè)籃球。一天課外活動(dòng),有3個(gè)班級(jí)分別計(jì)劃借籃球總數(shù)的 , 和 。請(qǐng)你算一算,這60個(gè)籃球夠借嗎?如果夠了,還多幾個(gè)籃球?如果不夠,還缺幾個(gè)?解:=60-30-20-15 =-5答:不夠借,還缺5個(gè)籃球。練習(xí)鞏固:第41頁1、2、7、探究活動(dòng) (1)如果2個(gè)數(shù)的積為負(fù)數(shù),那么這2個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?如果3個(gè)數(shù)的積為負(fù)數(shù),那么這3個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?4個(gè)數(shù)呢?5個(gè)數(shù)呢?6個(gè)數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡(jiǎn)便方法計(jì)算(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?本節(jié)課我們探討了有理數(shù)乘法的運(yùn)算律及其應(yīng)用.乘法的運(yùn)算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運(yùn)算中,靈活運(yùn)用運(yùn)算律可以簡(jiǎn)化運(yùn)算.(四)作業(yè):課本42頁作業(yè)題
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學(xué)生回答,師生共同總結(jié):負(fù)數(shù)和分?jǐn)?shù)的乘方書寫時(shí),一定要把整個(gè)負(fù)數(shù)和分?jǐn)?shù)用小括號(hào)括起來)三.計(jì)算:①(-2) ,②-2 ,③(- ) ,④ (叫4個(gè)學(xué)生上臺(tái)板演,其他練習(xí)本上完成,教師巡視,確保人人學(xué)得緊張高效).(四)討論更正,合作探究1.學(xué)生自由更正,或?qū)懗霾煌夥ǎ?.評(píng)講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學(xué)生總結(jié):負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個(gè)相同因數(shù)積的運(yùn)算,可以運(yùn)用有理數(shù)乘方法則進(jìn)行符號(hào)的確定和冪的求值.乘方的含義:①表示一種運(yùn)算;②表示運(yùn)算的結(jié)果.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當(dāng)m=6時(shí),原式=06-1+6=5;(2)當(dāng)m=-6時(shí),原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結(jié):解答此題的關(guān)鍵是先根據(jù)題意得出a+b=0,cd=1及m=±6,再代入所求代數(shù)式進(jìn)行計(jì)算.探究點(diǎn)三:有理數(shù)乘法的應(yīng)用性問題小紅家春天粉刷房間,雇用了5個(gè)工人,干了3天完成;用了某種涂料150升,費(fèi)用為4800元,粉刷的面積是150m2.最后結(jié)算工錢時(shí),有以下幾種方案:方案一:按工算,每個(gè)工100元;(1個(gè)工人干1天是一個(gè)工);方案二:按涂料費(fèi)用算,涂料費(fèi)用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請(qǐng)你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據(jù)有理數(shù)的乘法的意義列式計(jì)算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結(jié):解此題的關(guān)鍵是根據(jù)題意列出算式,計(jì)算出結(jié)果,比較得出最省的付錢方案.
方法總結(jié):股票每天的漲跌都是在前一天的基礎(chǔ)上進(jìn)行的,不要理解為每天都是在67元的基礎(chǔ)上漲跌.另外熟記運(yùn)算法則并根據(jù)題意準(zhǔn)確列出算式也是解題的關(guān)鍵.三、板書設(shè)計(jì)加法法則(1)同號(hào)兩數(shù)相加,取與加數(shù)相同的符號(hào),把絕對(duì) 值相加.(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大加數(shù)的符號(hào),并 用較大的絕對(duì)值減去較小的絕對(duì)值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).本課時(shí)利用情境教學(xué)、解決問題等方法進(jìn)行教學(xué),使學(xué)生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動(dòng)學(xué)習(xí)變?yōu)橹鲃?dòng)想學(xué).在本節(jié)教學(xué)中,要堅(jiān)持以學(xué)生為主體,教師為主導(dǎo),充分調(diào)動(dòng)學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動(dòng)中.
1.掌握有理數(shù)混合運(yùn)算的順序,并能熟練地進(jìn)行有理數(shù)加、減、乘、除、乘方的混合運(yùn)算.2.在運(yùn)算過程中能合理地應(yīng)用運(yùn)算律簡(jiǎn)化運(yùn)算.一、情境導(dǎo)入在學(xué)完有理數(shù)的混合運(yùn)算后,老師為了檢驗(yàn)同學(xué)們的學(xué)習(xí)效果,出了下面這道題:計(jì)算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計(jì)算正確嗎?二、合作探究探究點(diǎn)一:有理數(shù)的混合運(yùn)算計(jì)算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運(yùn)算,運(yùn)算時(shí),一定要注意運(yùn)算順序,尤其是本題中的乘除運(yùn)算.要從左到右進(jìn)行計(jì)算;(2)題有大括號(hào)、中括號(hào),在運(yùn)算時(shí),可從里到外進(jìn)行.注意要靈活掌握運(yùn)算順序.
師生共同歸納法則2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。生5:這兩天的庫存量合計(jì)增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會(huì)不會(huì)出現(xiàn)和為零的情況?提示:可以聯(lián)系倉庫進(jìn)出貨的具體情形。生6:如星期一倉庫進(jìn)貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個(gè)數(shù)相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號(hào)兩數(shù)相加的法則。一般地還有:一個(gè)數(shù)同零相加,仍得這個(gè)數(shù)。小結(jié):運(yùn)算關(guān)鍵:先分類運(yùn)算步驟:先確定符號(hào),再計(jì)算絕對(duì)值做一做:(口答)確定下列各題中和的符號(hào),并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計(jì)算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請(qǐng)四位學(xué)生板演,讓學(xué)生批改并說明理由。
解析:∵ab>0,根據(jù)“兩數(shù)相除,同號(hào)得正”可知,a、b同號(hào),又∵a+b<0,∴可以判斷a、b均為負(fù)數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側(cè)重點(diǎn)在于考查學(xué)生的邏輯推理能力.讓學(xué)生深刻理解除法是乘法的逆運(yùn)算,對(duì)學(xué)好本節(jié)內(nèi)容有比較好的作用.教學(xué)設(shè)計(jì)可以采用課本的引例作為探究除法法則的過程.讓學(xué)生自己探索并總結(jié)除法法則,同時(shí)也讓學(xué)生對(duì)比乘法法則和除法法則,加深印象.并講清楚除法的兩種運(yùn)算方法:(1)在除式的項(xiàng)和數(shù)字不復(fù)雜的情況下直接運(yùn)用除法法則求解.(2)在多個(gè)有理數(shù)進(jìn)行除法運(yùn)算,或者是乘、除混合運(yùn)算時(shí)應(yīng)該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運(yùn)算律解決問題.
1、掌握有理數(shù)混合運(yùn)算法則,并能進(jìn)行有理數(shù)的混合運(yùn)算的計(jì)算。2、經(jīng)歷“二十四”點(diǎn)游戲,培養(yǎng)學(xué)生的探究能力[教學(xué)重點(diǎn)]有理數(shù)混合運(yùn)算法則。[教學(xué)難點(diǎn)]培養(yǎng)探索思 維方式?!窘虒W(xué)過程】情境導(dǎo)入——有理數(shù)的混合運(yùn)算是指一個(gè)算式里含有加、減、乘、除、乘方的多種運(yùn)算.下面的算式里有哪幾種運(yùn)算?3+50÷22×( )-1.有理數(shù)混合運(yùn)算的運(yùn)算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級(jí)運(yùn)算,按照從左至右的順序進(jìn)行;3 如果有括號(hào),就先算小括號(hào)里的,再算中括號(hào)里的,最后算大括號(hào)里的。 加法和減法叫做第一級(jí)運(yùn)算;乘法和除法叫做第二級(jí)運(yùn)算;乘方和開方(今后將會(huì)學(xué)到)叫做第三級(jí)運(yùn)算。注意:可以應(yīng)用運(yùn)算律,適當(dāng)改變運(yùn)算順序,使運(yùn)算簡(jiǎn)便.合作探究——
2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時(shí)彈簧長15厘米;當(dāng)所掛物體的質(zhì)量為3千克時(shí),彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時(shí)彈簧的長度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報(bào),近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對(duì)于海岸的距離s(海里)與追趕時(shí)間t(分)之間的關(guān)系.當(dāng)時(shí)間t等于多少分鐘時(shí),我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實(shí)際問題時(shí)從不同角度思考問題,就會(huì)得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式: ;2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b,進(jìn)而得到一次函數(shù)的表達(dá)式.
由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點(diǎn)坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準(zhǔn)確.三、板書設(shè)計(jì)1.二元一次方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個(gè)方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象;(3)觀察圖象,找出交點(diǎn)的坐標(biāo);(4)寫出方程組的解.通過引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進(jìn)一步揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點(diǎn)之間的對(duì)應(yīng)關(guān)系.進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí),充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
方法總結(jié):(1)若被開方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡(jiǎn),使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡(jiǎn)二次根式(后面學(xué)到).探究點(diǎn)三:最簡(jiǎn)二次根式在二次根式8a,c9,a2+b2,a2中,最簡(jiǎn)二次根式共有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡(jiǎn)二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗(yàn)被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計(jì)二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡(jiǎn)二次根式本節(jié)經(jīng)歷從具體實(shí)例到一般規(guī)律的探究過程,運(yùn)用類比的方法,得出實(shí)數(shù)運(yùn)算律和運(yùn)算法則,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系,加深學(xué)生對(duì)運(yùn)算法則的理解,能否根據(jù)問題的特點(diǎn),選擇合理、簡(jiǎn)便的算法,能否確認(rèn)結(jié)果的合理性等等.
本節(jié)課開始時(shí),首先由一個(gè)要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個(gè)二次根式求和的運(yùn)算。從而提出問題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過問題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運(yùn)算法則,在設(shè)計(jì)本課時(shí)教案時(shí),著重從以下幾點(diǎn)考慮:1.先通過對(duì)實(shí)際問題的解決來引入二次根式的加減運(yùn)算,再由學(xué)生自主討論并總結(jié)二次根式的加減運(yùn)算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實(shí)際問題的能力。3.對(duì)法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
1.會(huì)用二次根式的四則運(yùn)算法則進(jìn)行簡(jiǎn)單地運(yùn)算;(重點(diǎn))2.靈活運(yùn)用二次根式的乘法公式.(難點(diǎn))一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個(gè)數(shù)之間有什么關(guān)系,你能借助什么運(yùn)算法則或運(yùn)算律解釋它?二、合作探究探究點(diǎn)一:二次根式的乘除運(yùn)算【類型一】 二次根式的乘法計(jì)算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個(gè)二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡(jiǎn).【類型二】 二次根式的除法計(jì)算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開方而是乘法,但為了方便起見,我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
屬于此類問題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。
小劉同學(xué)用10元錢購買兩種不同的賀卡共8張,單價(jià)分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個(gè)方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個(gè)相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個(gè)方程組符合題意,可從題目中找出兩個(gè)相等關(guān)系,然后代入未知數(shù),即可得到方程組,進(jìn)而得到正確答案.三、板書設(shè)計(jì)二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會(huì)逐步掌握基本的數(shù)學(xué)知識(shí)和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識(shí),提高解決問題的能力,感受數(shù)學(xué)創(chuàng)造的樂趣,增進(jìn)學(xué)好數(shù)學(xué)的信心,增加對(duì)數(shù)學(xué)較全面的體驗(yàn)和理解.
第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實(shí)物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個(gè),才比我多馱2個(gè).”老牛氣不過地說:“哼,我從你背上拿來一個(gè),我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問題呢?請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個(gè)未知數(shù),從而得出二元一次方程.這個(gè)問題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程 ,若老牛從小馬背上拿來1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程: .
解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時(shí),一般是求什么,設(shè)什么,并且所列方程的個(gè)數(shù)與未知數(shù)的個(gè)數(shù)相等.解這類問題的應(yīng)用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書設(shè)計(jì)列方程組,解決問題)一般步驟:審、設(shè)、列、解、驗(yàn)、答關(guān)鍵:找等量關(guān)系通過“雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會(huì)到數(shù)學(xué)中的“趣”;進(jìn)一步強(qiáng)調(diào)數(shù)學(xué)與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實(shí)際價(jià)值,培養(yǎng)學(xué)生的人文精神;進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗(yàn),激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動(dòng)、主動(dòng)與他人合作交流的意識(shí).
第三環(huán)節(jié):課堂小結(jié)活動(dòng)內(nèi)容:1. 通過前面幾個(gè)題,你對(duì)列方程組解決實(shí)際問題的方法和步驟掌握的怎樣?2. 這里面應(yīng)該注意的是什么?關(guān)鍵是什么?3. 通過今天的學(xué)習(xí),你能不能解決求兩個(gè)量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實(shí)際問題的主要步驟是什么?說明:通過以上四個(gè)問題,學(xué)生基本上掌握了列二元一次方程組解決實(shí)際問題的方法和步驟,可啟發(fā)學(xué)生說出自己的心得體會(huì)及疑問.活動(dòng)意圖:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.說明:還可以建議有條件的學(xué)生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學(xué)還可互相編題考察對(duì)方;還可以設(shè)置"我為老師出難題"活動(dòng),每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學(xué)生的學(xué)習(xí)興趣和信心。
反思本課的教學(xué)過程,我有以下幾點(diǎn)認(rèn)識(shí):1、重視學(xué)生的經(jīng)驗(yàn)和體驗(yàn),發(fā)展數(shù)感建構(gòu)主義的學(xué)生觀認(rèn)為,學(xué)習(xí)不是教師把知識(shí)簡(jiǎn)單地傳遞給學(xué)生,而是學(xué)生自己建構(gòu)知識(shí)的過程。在學(xué)習(xí)過程中,學(xué)生不是被動(dòng)地接受信息,而是以原有知識(shí)經(jīng)驗(yàn)為基礎(chǔ),主動(dòng)地建構(gòu)知識(shí)的意義。2、關(guān)注學(xué)生的思維,給學(xué)生較大的學(xué)習(xí)空間。引導(dǎo)學(xué)生自主探索的關(guān)鍵問題是要給學(xué)生多大的探究空間?我以引導(dǎo)學(xué)生自主探索作為根本出發(fā)點(diǎn),設(shè)計(jì)具有較大探究問題的空間,如“你發(fā)現(xiàn)了什么?你有什么問題?”等,學(xué)生們結(jié)合直觀圖的觀察,逐步發(fā)現(xiàn)分子比分母小的分?jǐn)?shù)可以在一個(gè)單位“1”中表示,并且小于1;3.本節(jié)課最大的不足之處就是由于時(shí)間觀念,把一節(jié)課的內(nèi)容分開了,比如在教學(xué)中加入畫一畫內(nèi)容可以加深學(xué)生從部分到整體的思維,使學(xué)生更近一步理解分?jǐn)?shù)。