方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數(shù)乘法的運算律的實際應用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達中點.方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進行簡便計算.新課程理念要求把學生“學”數(shù)學放在教師“教”之前,“導學”是教學的重點.因此,在本節(jié)課的教學中,不要直接將結(jié)論告訴學生,而是引導學生從大量的實例中尋找解決問題的規(guī)律.學生經(jīng)歷積極探索知識的形成過程,最后總結(jié)得出有理數(shù)乘法的運算律.整個教學過程要讓學生積極參與,獨立思考和合作探究相結(jié)合,教師適當點評,以達到預期的教學效果.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當m=6時,原式=06-1+6=5;(2)當m=-6時,原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結(jié):解答此題的關(guān)鍵是先根據(jù)題意得出a+b=0,cd=1及m=±6,再代入所求代數(shù)式進行計算.探究點三:有理數(shù)乘法的應用性問題小紅家春天粉刷房間,雇用了5個工人,干了3天完成;用了某種涂料150升,費用為4800元,粉刷的面積是150m2.最后結(jié)算工錢時,有以下幾種方案:方案一:按工算,每個工100元;(1個工人干1天是一個工);方案二:按涂料費用算,涂料費用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據(jù)有理數(shù)的乘法的意義列式計算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結(jié):解此題的關(guān)鍵是根據(jù)題意列出算式,計算出結(jié)果,比較得出最省的付錢方案.
方法總結(jié):股票每天的漲跌都是在前一天的基礎上進行的,不要理解為每天都是在67元的基礎上漲跌.另外熟記運算法則并根據(jù)題意準確列出算式也是解題的關(guān)鍵.三、板書設計加法法則(1)同號兩數(shù)相加,取與加數(shù)相同的符號,把絕對 值相加.(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個數(shù)同0相加,仍得這個數(shù).本課時利用情境教學、解決問題等方法進行教學,使學生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進入學習氛圍,把學生從被動學習變?yōu)橹鲃酉雽W.在本節(jié)教學中,要堅持以學生為主體,教師為主導,充分調(diào)動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中.
1.掌握有理數(shù)混合運算的順序,并能熟練地進行有理數(shù)加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數(shù)的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數(shù)的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.
探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關(guān)于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設計勾股定理驗證拼圖法面積法簡單應用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應用勾股定理解決一些實際問題,學會勾股定理的應用并逐步培養(yǎng)學生應用數(shù)學解決實際問題的能力,為后面的學習打下基礎.
當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準對應邊.三、板書設計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結(jié)論:從上面的試驗可以看到:當重復實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調(diào)換,至少應該進多少件西裝?六、課堂小結(jié):盡管隨機事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現(xiàn)的頻率就會隨著實驗次數(shù)的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習補充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計口袋中黑球的個數(shù),采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計口袋中大約有 48 個黑球。
如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.
(1)該校被抽查的學生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學生,估計該年級在2015年有多少名學生視力合格.解析:由折線統(tǒng)計圖可知2015年被抽取的學生人數(shù),且扇形統(tǒng)計圖中對應的A區(qū)所占的百分比已知,由此即可求出被抽查的學生人數(shù);根據(jù)扇形統(tǒng)計圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學生視力合格.解:(1)該校被抽查的學生人數(shù)為80÷40%=200(人);(2)估計該年級在2015年視力合格的學生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個統(tǒng)計圖中獲取正確的信息,并互相補充互相利用.例如求被抽查的學生人數(shù)時,由折線統(tǒng)計圖可知2015年被抽取的學生人數(shù)是80人,與其相對應的是扇形統(tǒng)計圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學生人數(shù)為80÷40%=200(人).
集合的基本運算(1) 一、教學目標 1、 知識與技能 (1)理解并集和交集的含義,會求兩個簡單集合的交集與并集。 (2)能夠使用Venn圖表達兩個集合的運算,體會直觀圖像對抽象概念理解的作用。 2、過程與方法 (1)進一步體會類比的作用 。 (2) 進一步樹立數(shù)形結(jié)合的思想。 3、情感態(tài)度與價值觀 集合作為一種數(shù)學語言,讓學生體會數(shù)學符號化表示問題的簡潔美。 二、教學重點與難點 教學重點:并集與交集的含義 。 教學難點:理解并集與交集的概念,符號之間的區(qū)別與聯(lián)系。
【課題】1.1 集合的概念【教學目標】1、理解集合、元素的概念及其關(guān)系,掌握常用數(shù)集的字母表示;2、掌握集合的列舉法與描述法,會用適當?shù)姆椒ū硎炯希?、通過集合語言的學習與運用,培養(yǎng)分類思維和有序思維,從而提升數(shù)學思維能力.4、接受集合語言,經(jīng)歷利用集合語言描述元素與集合間關(guān)系的過程,養(yǎng)成規(guī)范意識,發(fā)展嚴謹?shù)淖黠L?!窘虒W重點】集合的表示法. 【教學難點】集合表示法的選擇與規(guī)范書寫.【教學設計】(1)通過生活中的實例導入集合與元素的概念;(2)引導學生自然地認識集合與元素的關(guān)系;(3)針對集合不同情況,認識到可以用列舉和描述兩種方法表示集合,然后再對表示法進行對比分析,完成知識的升華;(4)通過練習,鞏固知識.(5)依照學生的認知規(guī)律,順應學生的學習思路展開,自然地層層推進教學.
課 程數(shù)學章節(jié)內(nèi)容5.1角的概念推廣課程類型新課課時安排2課時指導教師 日期12月2 日學習目標理解將角度從0°~360°推廣任意角。學習重點掌握角的度量、任意角學習難點理解象限角、界限角和終邊相同的角回顧(溫故知新)1、角度的概念:什么是角?始邊、終邊、頂點。 問題(順著問題找思路)1、正角.負角.零角.界限角和第幾象限的角概念?按照逆時針方向旋轉(zhuǎn)所形成的角叫做________,按照_____時針旋轉(zhuǎn)所形成的角叫負角。當射線沒有作任何旋轉(zhuǎn)時,形成的角叫________(結(jié)合圖形講解) 2、在坐標系中依次表示390°、30°、-330°,觀察圖像,探討終邊相等的角的特點、有什么關(guān)系?思考如何用集合表示終邊相等的角度?
學科數(shù)學 課 題 1.2 集合之間的關(guān)系班級 人數(shù) 授課時數(shù)2 課 型新課 周次 授課時間 教 學 目 的 知識目標:(1)掌握子集、真子集的概念; (2)掌握兩個集合相等的概念; (3)會判斷集合之間的關(guān)系. 能力目標:培養(yǎng)學生的分析問題能力解決問題的能力. 情感目標:通過師生互動,學生之間的討論分析,加強合作意識。 教學重點集合與集合間的關(guān)系及其相關(guān)符號表示. 教學難點真子集概念的理解.
學科數(shù)學 課 題 1.4 充要條件班級 人數(shù) 授課時數(shù) 2 課 型 新授課 周次 授課時間 教 學 目 的 知識目標:了解“充分條件”、“必要條件”及“充要條件” 能力目標:培養(yǎng)學生的分析問題能力解決問題的能力. 情感目標:通過師生互動,學生之間的討論分析,加強合作意識。 教學重點“充分條件”、“必要條件”及“充要條件”.教學難點符號“”,“”,“”的正確使用. 教 具 教 后 小 結(jié) 學生是否真正理解有關(guān)知識; 是否能利用知識、技能解決問題; 在知識、技能的掌握上存在哪些問題。
【教學目標】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學重點】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法。【教學難點】 一元二次不等式的解法?!窘虒W設計】 1、從復習一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習,培養(yǎng)學生的數(shù)學思維能力?!菊n時安排】 2課時(90分鐘)【教學過程】一、一元二次不等式的解法² 復習回顧1、根據(jù)初中所學知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當y=0時,x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點的坐標是什么?(3)當y<0時,x的取值范圍是什么?總結(jié):由此看到,通過對函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
【教學目標】1、理解含絕對值不等式或的解法;2、了解或的解法;3、通過數(shù)形結(jié)合的研究問題,培養(yǎng)觀察能力;4、通過含絕對值的不等式的學習,學會運用變量替換的方法,從而提升計算技能。【教學重點】(1)不等式或的解法.(2)利用變量替換解不等式或.【教學難點】 利用變量替換解不等式或.【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖 *回顧思考 復習導入 問題 任意實數(shù)的絕對值是如何定義的?其幾何意義是什么? 解決 對任意實數(shù),有 其幾何意義是:數(shù)軸上表示實數(shù)的點到原點的距離. 拓展 不等式和的解集在數(shù)軸上如何表示? 根據(jù)絕對值的意義可知,方程的解是或,不等式的解集是(如圖(1)所示);不等式的解集是(如圖(2)所示). 介紹 提問 歸納總結(jié) 引導 分析 了解 思考 回答 觀察 領會 復習 相關(guān) 知識 點為 進一 步學 習做 準備 充分 借助 圖像 進行 分析
課程:數(shù)學課題: 3.1.1函數(shù)的概念課型:講授課課時:2課時授課班級:2015級南口班授課時間:2016年3月1日授課地點:南口校區(qū)教 學 目 標知識目標1.能用函數(shù)語言描述圖像、解析式中自變量與函數(shù)值的依賴關(guān)系; 2.會計算函數(shù)的定義域,理解值域的含義 3.會用語言表述自變量與函數(shù)值間的對應關(guān)系能力目標通過對實例的分析,培養(yǎng)學生的觀察能力,抽象概括及邏輯思維能力 通過計算函數(shù)的定義域,培養(yǎng)學生的計算能力素養(yǎng)目標函數(shù)概念的思想蘊含了很多數(shù)學思維,也滲透生活中及其他學科范圍內(nèi),通過學習使學生認同函數(shù)的抽象性。教學重 點理解函數(shù)的概念教學難 點判斷兩個函數(shù)是否相同教學方 法引導啟發(fā),講練結(jié)合教學資 源演示文稿板 書 設 計3.1函數(shù)的概念 設集合A、B為非空數(shù)集,對于確定的對 應法則f下,在集合A中取定任意一個數(shù)x, 在集合B中都有唯一確定的數(shù)f(x)與之相 對應,則稱f:A→B為集合A到集合B的一 個函數(shù). 記作:y=f(x),x∈A X叫自變量,y叫函數(shù)值,集合A叫函數(shù)的 定義域,所有函數(shù)值組成的集合叫值域。
【教學目標】知識目標:⑴ 理解函數(shù)的單調(diào)性與奇偶性的概念;⑵ 會借助于函數(shù)圖像討論函數(shù)的單調(diào)性;⑶理解具有奇偶性的函數(shù)的圖像特征,會判斷簡單函數(shù)的奇偶性.能力目標:⑴ 通過利用函數(shù)圖像研究函數(shù)性質(zhì),培養(yǎng)學生的觀察能力;⑵ 通過函數(shù)奇偶性的判斷,培養(yǎng)學生的數(shù)學思維能力.【教學重點】⑴ 函數(shù)單調(diào)性與奇偶性的概念及其圖像特征;⑵ 簡單函數(shù)奇偶性的判定.【教學難點】函數(shù)奇偶性的判斷.(*函數(shù)單調(diào)性的判斷)【教學設計】(1)用學生熟悉的主題活動將所學的知識有機的整合在一起;(2)引導學生去感知數(shù)學的數(shù)形結(jié)合思想.通過圖形認識特征,由此定義性質(zhì),再利用圖形(或定義)進行性質(zhì)的判斷;(3)在問題的思考、交流、解決中培養(yǎng)和發(fā)展學生的思維能力.【教學備品】教學課件.【課時安排】3課時.(90分鐘)【教學過程】