學生掌握數(shù)學概念過程的本身就是一個把教材知識結構轉化成自己認知結構的過程,這一過程的結果可能形成正確的數(shù)學概念,也可能由于主、客觀原因而形成一些錯誤的數(shù)學概念。因此,在這一階段有兩大任務要完成,一是強化已經(jīng)形成的正確認識,二是修正某些錯誤認識,使掌握的概念都能正確反映數(shù)學對象的本質(zhì)屬性。在情境中解決問題是從新課教學到學生獨立作業(yè)之間的一個重要環(huán)節(jié),目的在于鞏固所學知識,并把知識轉化為技能。教材“試一試”和“練一練”的第1、2題,讓學生通過觀察、思考,并且在有了比較充分的感性體驗的基礎上揭示體積概念及讓學生充分感受同一物體形狀變了,但體積保持不變,增強實際體驗?!熬氁痪殹钡?題,讓學生體會到如果每個杯子的大小不同,那么3杯就可能等于2杯,這是為后面體積單位作鋪墊。
3. 實驗(課件演示)每個人每天要喝1400毫升水,也就是1.4升,讓同學們猜出猜看能有幾杯水,通過實驗告訴學生每天至少要喝多少杯水。(課件演示)閱讀材料,對學生進行節(jié)約用水的思想教育。4. 教師:我們知道了容積和容積單位,也知道了它們與體積單位的關系,現(xiàn)在讓我們試一試怎樣計算一個容器的容積.出示例5、一種小汽車上的油箱,里面長5dm,寬4dm,高2dm。這個油箱可以裝汽油多少升?請一位同學讀題.教師:這道題告訴了我們油箱里面的長、寬、高,我們能不能計算出它的容積?(可以.)但是,我們能不能直接算出它的容積是多少升?(不能.)那么應該怎樣做?(先算出體積,再把算出的體積單位的名數(shù)改寫成容積單位的名數(shù).)教師讓學生獨立做題,教師行間巡視,做完后一步一步地指名讓學生說一說是怎么做的,集體訂正。
因此,我從學生已有的生活出發(fā),尋找例子,幫助學生理解容積的概念。同時也多次提供了實踐機會,讓學生自己操作實驗的過程,在操作中感知1升、1毫升的大小和容積單位和體積單位之間的關系。二、說教學目標1、理解容積的概念,認識常用的容積單位,感知1升和1毫升的實際大小,并掌握容積單位、體積單位間的進率。2、通過實驗的方法,使學生經(jīng)歷探究容積單位、容積單位和體積單位之間的關系的過程。三、教學重難點:1、建立容積和容積單位概念,知道容積單位和體積單位的關系。2、會計算容積。四、說教法為了使課堂的主人能活躍起來,我用了自主探究式發(fā)現(xiàn)問題、談論交流和實驗教學的方法進行教學,從而也激發(fā)了學生的積極性和主動性。五、說學法:更多的是引導學生在自主嘗試、觀察、討論和探究中獲取知識。
5、 你能結合剛才的活動說一說你的感受嗎?6、 看來物體所占空間還有大小之分,那你能判斷出手機、收音機哪個物體所占的空間大?哪個物體所占的空間小嗎?7、 象石塊、手機、書包等這些都是它們的體積,誰能根據(jù)你的理解說一說什么是物體的體積?[小學生的思維以形象思維為主,隨著年齡的增長逐步向抽象思維過渡。根據(jù)這一特點,我在學生感知“空間”的基礎上,通過三次摸一摸的活動,引導學生進行操作、觀察,思考,使操作、觀察與思維、語言表達緊密結合起來,然后再逐步擺脫直觀形象,利用表象逐步抽象形成概念,由感性認識上升到理性認識。](三) 嘗試、解決問題在新一輪課改中,《標準》所提倡的數(shù)學課堂教學應“由單純的傳授知識的殿堂轉變?yōu)閷W生主動從事數(shù)學活動的場所;學生從單純的知識接受者轉變?yōu)閿?shù)學學習的主人。”
三、說學法有效的數(shù)學學習活動不是單純地依賴模仿與記憶,而是一個有目的的、主動建構知識的過程。為此,我十分重視學生學習方法的指導,在本節(jié)課中,我指導學生學習的方法為:觀察發(fā)現(xiàn)法、動手操作法、自主探究法、合作交流法,讓他們在說一說、擺一擺、填一填、做一做、想一想等一系列活動中探索長方體體積的計算方法。我力求以"長方體、正方體體積"這一數(shù)學知識為載體,通過學生主動參與、自主探究、發(fā)現(xiàn)結論的過程,使學生的數(shù)學認知結構建立在自己的實踐經(jīng)驗和主動建構之上。四、說教學流程教學時.我安排了情景引入.揭示課題,自主探究.推導公式,利用關系.類推公式,鞏固練習.運用公式,全課總結.交流評價五個環(huán)節(jié).(一)激情引趣.揭示課題.首先,通過比較生活中一些物體的大小,復習體積概念。
【教學程序】(一)導入:1.聽《烏鴉喝水》的小故事。2.揭題:師:你知道烏鴉是通過什么方法喝到水的嗎?這蘊涵了什么道理?這就是今天我們要學習的新課題《體積單位》。(出示課題)(二)教學“體積單位”。師出示圖,請生比一比誰的體積大?[說明:教師通過兩個長方體體積大小的比較,學生發(fā)現(xiàn)不好比較,從而指出計量物體的體積要用統(tǒng)一的體積單位。從而引入“體積單位”的教學]師:為了更準確的比較圖中這兩個長方體體積的大小,我們可以把它們切成若干個同樣大小的正方體,只要數(shù)一數(shù),每個長方體包含有幾個這樣的小正方體,就能準確地比出它們的大小。請生數(shù)一數(shù),告訴老師誰的體積比較大?學生匯報(注意讓學生說出數(shù)的方法)。師:像計量長度需要長度單位,計量面積需要面積單位,我們計量體積也需要有“體積單位”。為了更準確地計量出物體體積的大小,我們可以像圖中這樣用同樣大小的正方體作為體積單位。
1.要有充分的直觀操作。學生思維的特點一般的是從感性認識開始,然后形成表象,通過一系列的思維活動,上升到理性認識。本課的教學采用直觀操作法,是一個重要的環(huán)節(jié)。2.啟發(fā)學生獨立思考。學生是學習的主體,只有引導學生獨立地發(fā)現(xiàn)問題、思考問題、解決問題,才能收到事半功倍的教學效果。3.講練結合。4.充分運用知識的遷移規(guī)律,引導學生掌握新知識。教學過程:三、說教學過程:(一)、創(chuàng)設情境上課前,教師先給大家講一個與今天的學習內(nèi)容有關的故事,希望同學們認真地聽、認真地想。故事是這樣的:大象過生日啦!那天來了很多的朋友,有小兔、小猴等等等等,可熱鬧啦!在眾多的朋友中只數(shù)小兔最高興,它樂什么呢?原來它知道了蛋糕的分配方案,認為自己分的蛋糕比小猴的大。蛋糕是這樣分配的:分給小兔的蛋糕是棱長10厘米的正方體,分給小猴的蛋糕是棱長1分米的方體。(分別出示兩塊同樣大小的正方體,用10厘米和1分米表示它們的棱長)
(一)復習舊知,導入新課。1、師:同學們,你們還記得《烏鴉喝水》的故事嗎?我們先來看一看這個故事吧!(課件第2張播放視頻《烏鴉喝水》)【設計意圖】用視頻引入課題,激發(fā)學生的學習興趣。2、烏鴉是怎么喝到水的?為什么?(課件第3張)生1:烏鴉把石子投進水罐中,水面升高了,烏鴉就喝到水了。生2:這說明石子占了一定的空間,所以水面會升高,烏鴉才能喝到水。師:這節(jié)課我們就來研究一下體積和體積單位。(板書課題)(二)探究新知1.小組實驗并觀察:(課件地4張)(1)取兩個同樣大小的玻璃杯,先往一個杯子里倒?jié)M水;取一塊鵝卵石放入另一個杯子,再把第一個杯子里的水倒進第二個杯子里,會出現(xiàn)什么情況?為什么?(2)匯報交流:(課件第5張)生1:第一個杯子里的水不能全部倒入第二個杯子里。師:你知道為什么會出現(xiàn)這種現(xiàn)象嗎?生2:鵝卵石占了一定的空間,所以第一個杯子會剩下一部分水?!驹O計意圖】用實驗的方式,讓學生從實驗的過程中發(fā)現(xiàn)現(xiàn)象并進一步思考原因,從而找到規(guī)律,培養(yǎng)學生的觀察能力、思維能力。2.下面的洗衣機、影碟機和手機,哪個所占的空間大?(課件第6張)洗衣機所占的空間最大。3.引入體積的意義:師:物體所占空間的大小叫做物體的體積。師:上面三個物體,哪個體積最大?哪個體積最?。?生:洗衣機的體積最大,手機的體積最小。4.學習體積單位(課件第7張)(1)怎樣比較下面兩個長方體體積的大小呢?
這道題的設計,一方面培養(yǎng)了學生解決實際問題的能力,另一方面也加深了對圓柱體積計算公式的理解,同時數(shù)學知識也和學生的生活實際結合起來,使學生明白,我們所學的數(shù)學是身邊的數(shù)學,是有趣的、有用的數(shù)學,從而激發(fā)學生的學習興趣。(五)總結全課,深化教學目標結合板書,引導學生說出本課所學的內(nèi)容,我們是這樣設計的:這節(jié)課我們學習了哪些內(nèi)容?圓柱體積的計算公式是怎樣推導出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學習,我們懂得了新知識的得來是通過已學的知識來解決的,以后希望同學們多動腦,勤思考,在我們的生活中還有好多問題需要利用所學知識來解決的,望同學們能學會運用,善于用轉化的思想來武裝自己的頭腦,思考問題。
1.教學內(nèi)容:本節(jié)教材是北師大版六年級下冊第一單元《圓柱和圓錐》,《圓錐體積》的第一課時。教學內(nèi)容為圓錐體積計算公式的推導,學生嘗試題、練習、試一試、練一練第一題。2.教材分析本節(jié)教材是在學生已經(jīng)掌握了圓柱體積計算及其應用和認識了圓錐的基本特征的基礎上學習的,是小學階段學習幾何知識的最后一課時內(nèi)容。讓學生學好這一部分內(nèi)容,有利于進一步發(fā)展學生的空間觀念,為進一步解決一些實際問題打下基礎。教材按照實驗、觀察、推導、歸納、實際應用的程序進行安排。3.教學重點:能正確運用圓錐體積計算公式求圓錐的體積。教學難點:理解圓錐體積公式的推導過程。4.教學目標:(1)知識方面:理解并掌握圓錐體積公式的推導過程,學會運用圓錐體積計算公式求圓錐的體積;
本單元前幾課時已經(jīng)認識了長方體和正方體的特征,學習了表面積的計算。這節(jié)課要在此基礎上掌握體積的概念和常用的體積單位,學會長方體和正方體的體積計算,掌握公式的意義和用法。這是下一步學習體積單位進率的基礎,更是以后學習容積的基礎。因此,長方體和正方體的體積計算必須掌握熟練。教學目標1、結合具體自作,引導學生探索并掌握長方體、正方體體積的計算公式,并能熟練地運用公式解決一些實際問題。 2、通過探索活動,培養(yǎng)學生的分析、概括能力,發(fā)展學生的空間觀念。 3、培養(yǎng)學生數(shù)學的應用意識。 重點:掌握長方體、正方體體積的計算方法,并運用公式解決實際問題。 難點:理解體積公式的意義。
(一)復習舊知,導入新課。師:同學們,上節(jié)課我們認識了體積和體積單位,請你填一填這兩道題,看看你學得怎么樣。(課件第2張)1.常用的體積單位有(立方厘米)、(立方分米)、(立方米),可以分別寫成(cm³) 、(dm³)、 (m³)。2.棱長是1cm的正方體,體積是(1cm³)。3.棱長是1dm的正方體,體積是(1dm³)。4.棱長是1m的正方體,體積是(1m³)?!驹O計意圖】1dm³是多少cm³呢?這節(jié)課我們就來研究一下體積單位間的進率。(板書課題)(二)探究新知1.探究立方分米和立方厘米間的進率:(課件第3張)(1)下圖是一個棱長為1dm的正方體,體積是1dm³。想一想,它的體積是多少立方厘米呢?(2)小組討論,你是怎樣想的?(3)匯報交流:(課件第4張)生1:如果把它的棱長看作是10cm,可以把它切成1000塊1cm³的小正方體。10×10×10=1000.生2:它的底面積是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【設計意圖】用小組討論的方式,讓學生從討論的過程中找到解決問題的方法,培養(yǎng)學生的語言表達能力、思維能力。2.你知道1m³等于多少立方分米嗎?(課件第5張)生1:把棱長是1m的正方體,看作棱長是10dm的正方體,10×10×10=1000dm³。1m³=1000dm³。 生2:棱長是1m的正方體,底面積是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理計量單位之間的進率。(1)小組討論:到現(xiàn)在為止,我們已經(jīng)學習了哪些計量單位?請整理在表中。
1.教學內(nèi)容 《圓柱的體積》是人教版小學數(shù)學第十二冊第三單元的內(nèi)容,它包括圓柱體的體積計算公式的推導和運用公式計算體積。2.本節(jié)課在教材中所處的地位和作用本節(jié)課是在學生已經(jīng)學過了圓面積公式的推導和長方體、正方體的體積公式的基礎上進行學習的,學生已經(jīng)有了把圓形拼成近似的長方形的經(jīng)驗,聯(lián)想到把圓柱切拼成長方體并不難,學好這部分知識,為今后學習復雜的形體知識打下扎實的基礎,是后繼學習的前提。3.教材的重點和難點圓柱體積的計算是本節(jié)課的教學重點。圓柱體積公式的推導過程是本節(jié)課的難點。弄清楚圓柱與轉化后的近似長方體之間的關系是教學的關鍵。4.教學目標 知識與技能目標:經(jīng)歷認識圓柱體積、探索圓柱體積計算公式及簡單應用的過程;探索并掌握圓柱體積公式;能計算圓柱的體積。情感與態(tài)度目標:在探索圓柱體積的過程中,進一步體會轉化的數(shù)學思想,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學結論的確定性。
(二)探究新知 1. 探究圓錐的體積的計算方法,學習例2。師:圓錐的體積和圓柱的體積有沒有關系呢?圓柱的底面是圓,圓錐的底面也是圓……通過實驗探究一下圓錐和圓柱體積之間的關系。小組合作探索:(1)各組準備好等底、等高的圓柱、圓錐形容器。(2)用倒沙子或水的方法試一試。(3)圓錐的體積與同它等底等 高的圓柱體積之間有什么關系?(4)小組活動,師巡視指導。2.推導圓錐體積的計算方法。 (1)課件演示等底等高的圓柱和圓錐
(一)復習導入 師:什么是體積?生:物體所占空間的大小是物體的體積。師:怎樣求長方體和正方體的體積?生:長方體的體積=底面積×高 正方體的體積=底面積×高師:圓的面積計算公式是怎樣推導出來的?課件出示:生:把圓轉化成長方形,長方形的長等于圓柱底面周長的一半,寬等于半徑,所以圓的面積:S = πr2猜測:把圓柱轉化成什么立體圖形來推導圓柱的體積公式呢?呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
【類型一】 逆用積的乘方進行簡便運算計算:(23)2014×(32)2015.解析:將(32)2015轉化為(32)2014×32,再逆用積的乘方公式進行計算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結:對公式an·bn=(ab)n要靈活運用,對于不符合公式的形式,要通過恒等變形轉化為公式的形式,運用此公式可進行簡便運算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大小:213×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結:利用積的乘方,轉化成同底數(shù)的同指數(shù)冪是解答此類問題的關鍵.三、板書設計1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運用在本節(jié)的教學過程中教師可以采用與前面相同的方式展開教學.教師在講解積的乘方公式的應用時,再補充講解積的乘方公式的逆運算:an·bn=(ab)n,同時教師為了提高學生的運算速度和應用能力,也可以補充講解:當n為奇數(shù)時,(-a)n=-an(n為正整數(shù));當n為偶數(shù)時,(-a)n=an(n為正整數(shù))
教學效果:部分學生能舉一反三,較好地掌握分式方程及其應用題的有關知識與解決生活中的實際問題等基本技能.第六環(huán)節(jié) 課后練習四、教學反思數(shù)學來源于生活,并應用于生活,讓學生用數(shù)學的眼光觀察生活,除了用所學的數(shù)學知識解決一些生活問題外,還可以從數(shù)學的角度來解釋生活中的一些現(xiàn)象,面向生活是學生發(fā)展的“源頭活水”.在解決實際生活問題的實例選擇上,我們盡量選擇學生熟悉的實例,如:學生身邊的事,購物,農(nóng)業(yè),工業(yè)等方面,讓學生真切地理解數(shù)學來源于生活這一事實。有些學生對應用題有一種心有余悸的感覺,其關鍵是面對應用題不知怎樣分析、怎樣找到等量關系。在教學中,如果采用列表的方法可幫助學生審題、找到等量關系,從而學會分析問題??赡軐W生最初并不適應這種做法,可采用分步走的方法,首先,讓學生從一些簡單、類似的問題中模仿老師的分析方法,然后在練習中讓學生悟出解決問題的竅門,學會舉一反三,最后達到能獨立解決問題的目的。
教學目標:1、引導學生通過計算、比較、觀察、等實踐活動,使學生理解倒數(shù)的意義,掌握求倒數(shù)的方法,并能正確熟練的求出倒數(shù)。2、通過自主探究、合作交流的方式培養(yǎng)學生與人合作的能力。3、提高學生學習數(shù)學的興趣,發(fā)展學生質(zhì)疑的習慣。教學重點:知道倒數(shù)的意義和會求一個數(shù)的倒數(shù)教學難點:1、0的倒數(shù)的求法。二、說教法基于教材內(nèi)容比較單調(diào),那么只有在教法上體現(xiàn)新、奇、特,才能讓學生想學、要學。在教學過程中,我將始終扮演一個組織者、引導者、合作者的角色,根據(jù)小學生從具體的形象思維逐步向抽象的邏輯思維發(fā)展的思維特點,聯(lián)系小學生熟悉的身邊實際,使抽象的內(nèi)容直觀化,激發(fā)學生的學習興趣,引導學生去發(fā)現(xiàn)問題、討論問題,放手讓他們自主探究和合作交流,幫助他們在自主探究、合作交流中真正理解并掌握本節(jié)課的數(shù)學知識、技能、思想和方法。
方法總結:當某一事件A發(fā)生的可能性大小與相關圖形的面積大小有關時,概率的計算方法是事件A所有可能結果所組成的圖形的面積與所有可能結果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關鍵是要找準兩點:(1)全部情況的總數(shù);(2)符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.探究點二:與面積有關的概率的應用如圖,把一個圓形轉盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,自由轉動轉盤,停止后指針落在B區(qū)域的概率為________.解析:∵一個圓形轉盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,∴圓形轉盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設計1.與面積有關的等可能事件的概率P(A)= 2.與面積有關的概率的應用本課時所學習的內(nèi)容多與實際相結合,因此教學過程中要引導學生展開豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問題,并進行合理的整合歸納,選擇適宜的數(shù)學方法來解決問題
一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質(zhì)地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )A.摸出的4個球中至少有一個是白球B.摸出的4個球中至少有一個是黑球C.摸出的4個球中至少有兩個是黑球D.摸出的4個球中至少有兩個是白球解析:∵袋子中只有3個白球,而有5個黑球,∴摸出的4個球可能都是黑球,因此選項A是不確定事件;摸出的4個球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個球是黑球,∴選項B是必然事件;摸出的4個球可能為1黑3白,∴選項C是不確定事件;摸出的4個球可能都是黑球或1白3黑,∴選項D是不確定事件.故選B.方法總結:事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.