一、教材:《畫一畫》這一內(nèi)容是在學生學習了《變化的量》和《正比例》這兩節(jié)內(nèi)容以后安排的,學生已經(jīng)結(jié)合大量的生活情境認識了生活中存在的許多相互依賴的變量,而且體會了這些變量之間的關(guān)系,認識了正比例及其意義,能初步判斷兩個相關(guān)聯(lián)的兩是不是成正比例,感受了正比例在生活中的應(yīng)用,學生對正比例的認識有了一定的基礎(chǔ)。教材安排這一內(nèi)容,一是讓學生進一步認識正比例,以及正比例中兩個相關(guān)聯(lián)的量之間的關(guān)系;二是通過讓學生在方格紙上描出成正比例的量所對應(yīng)的點并能在圖中根據(jù)一個變量的值估計它所對應(yīng)的變量的值,從而認識正比例圖像的特點。主要意圖是引導(dǎo)學生運用已有的知識,用圖的形式去直觀表示兩個成正比例的量的變化關(guān)系,鼓勵學生發(fā)現(xiàn)當兩個變量成正比例關(guān)系時,所繪成的圖像是一條直線,在此基礎(chǔ)上,鼓勵學生利用圖,進行一些估計,解決一些問題,為以后進一步學習正比例函數(shù)打下一定的基礎(chǔ)。
解決了以上三個問題以后,我再讓學生先獨立將四座山的高度按照從小到大的順序排列出來,這時,我會適當?shù)匾龑?dǎo)學生閱讀前面三個問題的解決過程,并梳理進行多位數(shù)比較的思路:先按數(shù)位比,再從高位看起。(三)分層次練習,鞏固新知識在學生掌握了上述比較大數(shù)的方法以后,我將讓學生運用所學的新知識,去解決”練一練”中的第1,2,5題。其中第1,2題是為了鞏固“萬以內(nèi)的數(shù)的比較方法”,“能用符號表示萬以內(nèi)數(shù)的大小”這兩個知識點;而第五題則是為了鼓勵學生在新的情景中,進行數(shù)的大小比較。(四)課程總結(jié)這節(jié)課,同學們收獲了什么?學生一定會很輕易地將上面四座山進行比較的規(guī)律說出來的。這時,我會引導(dǎo)學生回顧全文第四,板書設(shè)計(略)本節(jié)課,我將用最簡單的文字體現(xiàn)重難點,便于學生理解。我的說課到此結(jié)束,謝謝大家!
3、教學目標:(1)能靈活運用有余數(shù)除法的有關(guān)知識解決生活中簡單的實際問題,培養(yǎng)應(yīng)用意識。(2)在合作交流中勇于表達自己的想法,學會傾聽別人的意見。(3)通過合理解決實際問題體驗成功的喜悅。4、教學重點:解決有關(guān)“有余數(shù)除法問題”的簡單實際問題。5、教學難點:靈活處理有余數(shù)除法中需要根據(jù)實際情況而定的對余數(shù)的“取”與“舍”的問題,即對于商的“進1法”和“去尾法”。【教法學法】教法:整個教學過程,以學生為主,教師只是學生學習的服務(wù)者,知識的引路人,在教學設(shè)計中,正確理解新教材,抓住新教材特點,進行有創(chuàng)造性地使用教材,通過師生互動教學,引導(dǎo)學生運用動手實踐、自主探索和合作交流等學習方式,提高參與探索的欲望。學法:1、指導(dǎo)“探索實踐”。讓學生在探索、研究活動中感悟根據(jù)實際情況而定的對于商的“進1法”和“去尾法”。2、引導(dǎo)“思”鼓勵“問”。讓學生在探究活動中勇于思考,大膽質(zhì)疑,不斷創(chuàng)新。
三、說教學重點、難點重點是小數(shù)乘法的豎式計算方法和積與乘數(shù)的大小關(guān)系。難點是小數(shù)乘法中乘數(shù)末位有0的計算。四、說學情在進行本節(jié)內(nèi)容學習之前,學生已經(jīng)學習了整數(shù)乘法的運算規(guī)律,小數(shù)的意義及其加減法,還有小數(shù)乘法的計算規(guī)律。本節(jié)內(nèi)容重點是學會把小數(shù)乘法的運算方法應(yīng)用到解決實際問題中去。根據(jù)四年級學生的認知特點和課堂注意力時間有限的特點,在教學中一定要提高課堂效率五、說教法、學法在本課教學中,我采取的教學方法是:1.通過復(fù)習,回顧計算規(guī)律,并把它應(yīng)用到豎式中去。2.情境展示,把數(shù)學問題直接放在實際問題中來學習并解決。3.解決問題時采用自主探索、獨立思考和小組合作交流的學習方式。通過這些教學法激發(fā)學生學習的積極性和主動性,引導(dǎo)學生把學到的規(guī)律應(yīng)用到現(xiàn)實生活中來解決實際問題。六、說教學過程(一)舉例說明積的小數(shù)位數(shù)與乘數(shù)小數(shù)位數(shù)的關(guān)系。通過比眼力,做一做,復(fù)習前一節(jié)課所學內(nèi)容,為本節(jié)課打下基礎(chǔ)。
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學時要多舉幾個例子,讓學生從中總結(jié)出規(guī)律,體驗自主探究的樂趣和數(shù)學學習的魅力,為以后的學習奠定基礎(chǔ)
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結(jié)合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點:用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
解:(1)設(shè)第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值。☆ 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
方法總結(jié):當某一事件A發(fā)生的可能性大小與相關(guān)圖形的面積大小有關(guān)時,概率的計算方法是事件A所有可能結(jié)果所組成的圖形的面積與所有可能結(jié)果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關(guān)鍵是要找準兩點:(1)全部情況的總數(shù);(2)符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.探究點二:與面積有關(guān)的概率的應(yīng)用如圖,把一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,自由轉(zhuǎn)動轉(zhuǎn)盤,停止后指針落在B區(qū)域的概率為________.解析:∵一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,∴圓形轉(zhuǎn)盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設(shè)計1.與面積有關(guān)的等可能事件的概率P(A)= 2.與面積有關(guān)的概率的應(yīng)用本課時所學習的內(nèi)容多與實際相結(jié)合,因此教學過程中要引導(dǎo)學生展開豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問題,并進行合理的整合歸納,選擇適宜的數(shù)學方法來解決問題
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設(shè)計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應(yīng)用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內(nèi)容,為以后的學習奠定基礎(chǔ)
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實際應(yīng)用題時,應(yīng)分清何為除式,何為被除式,然后應(yīng)當單項式除以單項式法則計算.三、板書設(shè)計1.單項式除以單項式的運算法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.2.單項式除以單項式的應(yīng)用在教學過程中,通過生活中的情景導(dǎo)入,引導(dǎo)學生根據(jù)單項式乘以單項式的乘法運算推導(dǎo)出其逆運算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學概念的生成過程,從而加深印象
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項式乘單項式法則是解題的關(guān)鍵.三、板書設(shè)計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應(yīng)用本課時的重點是讓學生理解單項式的乘法法則并能熟練應(yīng)用.要求學生在乘法的運算律以及冪的運算律的基礎(chǔ)上進行探究.教師在課堂上應(yīng)該處于引導(dǎo)位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應(yīng)用該知識點
一、情境導(dǎo)入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.
方法總結(jié):觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢寫出自變量與因變量之間的關(guān)系式.三、板書設(shè)計1.用關(guān)系式表示變量間關(guān)系2.表格和關(guān)系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對應(yīng)值,但不能直接反映變量的整體變化情況;用關(guān)系式表示變量之間的關(guān)系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應(yīng)的因變量的值,但是需計算.本節(jié)課的教學內(nèi)容是變量間關(guān)系的另一種表示方法,這種表示方法學生才接觸到,學生感覺有點難.這節(jié)課的重點是讓學生掌握用關(guān)系式與表格表示變量間的關(guān)系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學生對幾個例子比較、討論、總結(jié)、歸納兩種方法的優(yōu)點來解決,這樣學生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當?shù)姆椒?/p>