教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 8.3 兩條直線的位置關系(二) *創(chuàng)設情境 興趣導入 【問題】 平面內兩條既不重合又不平行的直線肯定相交.如何求交點的坐標呢? 圖8-12 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 *動腦思考 探索新知 如圖8-12所示,兩條相交直線的交點,既在上,又在上.所以的坐標是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點的坐標. 觀察圖8-13,直線、相交于點P,如果不研究終邊相同的角,共形成四個正角,分別為、、、,其中與,與為對頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當兩條直線平行或重合時,兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當直線與直線的夾角為直角時稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領 分析 仔細 分析 講解 關鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領 學生 分析 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因為∠NBC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和(圖1-10),在平地上選擇適合測量的點C,如果,m,m,試計算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F2的合力F合,由力的平衡原理知,F應在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F與F1間的夾角是180°–33°=147°. 答:F約為191N,F與F合的方向相反,且與F1的夾角約為147°. 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數量關系呢? c 圖1-7 當三角形為鈍角三角形時,不妨設角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標系,則 兩邊取與單位向量的數量積,得 由于設與角A,B,C相對應的邊長分別為a,b,c,故 即 所以 同理可得 即 當三角形為銳角三角形時,同樣可以得到這個結論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細分析講解 總結 歸納 詳細分析講解 思考 理解 記憶 理解 記憶 帶領 學生 總結 20
5、弊端:(1)經濟發(fā)展不均衡,片面發(fā)展重工業(yè),使輕工業(yè)和農業(yè)長期處于落后狀態(tài);(2)對農民的剝奪太重,挫傷了農民的生產積極性;(3)長期執(zhí)行指令性計劃嚴重削弱了企業(yè)的生產自主權,不利于發(fā)揮企業(yè)的生產積極性,制約了蘇聯經濟的可持續(xù)發(fā)展。(4)計劃經濟體制確立后,沒有隨著社會的變化進行調整,二戰(zhàn)后逐漸僵化,喪失了自我完善的功能,成為蘇聯解體的重要因素?!竞献魈骄俊克勾罅帜J降脑u價及經驗教訓:積極:①使蘇聯迅速實現了 工業(yè)化②蘇聯經濟實力的迅速增長,為反法西斯戰(zhàn)爭的勝利奠定了 物質基礎 。消極:①政治:高度集權,破壞了 民主與法制 ; ②經濟:優(yōu)先發(fā)展重工業(yè)使 農業(yè)和輕工業(yè)長期處于落后狀態(tài),農民生產積極性不高;計劃指令,壓制了地方和企業(yè)的積極性,阻礙蘇聯經濟的發(fā)展高度集中的計劃經濟體制,成為東歐劇變和蘇聯解體的重要原因。
經雙方協(xié)商,簽訂本合同,共同信守。品名 規(guī)格型號 單位 數量 單價 金額 交貨日期 超欠幅度%貨款共計人民幣(大寫)1,質量標準:_____________________________________________2,交貨(運輸)辦法及地點:_________________________________3,包裝要求及費用負擔:___________________________________4,結算方式及限期:_______________________________________5,其它:_________________________________________________(1)未按合同規(guī)定的時間、數量交貨,少交而需方仍需要的,應按數補交,不需要的,可以退貨,并承擔每天誤期貨款的千分之三違約金。
目的:1、讓幼兒學會仿編和解答4的加減應用題。2、在生活情景中能根據水果卡片自編4的加減應用題。準備:1、知識經驗準備:請家長帶 幼兒去買東西,使幼兒了解一個買與賣的過程。2、物質準備:準備各種水果卡片,人手4個替代物作錢。過程:一、以“幫農民伯伯摘果子”引入。“小朋友,果園里的水果都成熟了,農民伯伯想請你們幫他摘水果,你們愿意嗎?”(愿意)二、游戲“摘水果”。師交代游戲玩法和規(guī)則。三、分類活動:分水果。1、引導幼兒將自己所摘的水果跟同伴之間進行交流。2、交代任務:將各種水果分別放在筐里。
由于題目較簡單,所以學生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結:活動內容:學生歸納總結本節(jié)課所學知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調本課的重點內容是要學會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關系.引導學生自己對所學知識和思想方法進行歸納和總結,從而形成自己對數學知識的理解和解決問題的方法策略.
1、試驗性操作實驗師:大家說紅花的照片能不能用方格代表?下面請同學們用方格代表紅花的照片,用我們的學具卡片擺出紅花的朵數。(學生操作,教師巡視。)師:大家說黃花的朵數能不能也可以這樣操作出?請同學們用上面的方法再操作出黃花的朵數。(學生操作)師:同學們已經擺出了紅花的朵數和黃花的朵數,怎么操作才能知道紅花和黃花一共是多少朵?(把紅花的朵數和黃花的朵數合并起來數一數)(學生操作,教師巡視。)師:請把合并起來的數整理一下,讓人一看就能知道是多少朵好嗎?請同學們寫出算式的答案。(即操作表達式)教師多媒體演示全部操作實驗過程,并簡單小結。2、驗證性操作實驗師:同學們,假如紅花是56朵,黃花是38朵,求“紅花和黃花共幾朵?”你們還能不能用上面的操作實驗方法來解決?(能)好!那就請你們試試看。(學生操作,教師巡視。)
(4)列式計算:94—34=60(個)60—29=31(個)或34+29=63(個)94-63=31(個)讓學生列出綜合算式,要他們正確的使用小括號。列好后要求學生說出每一步表示的意義。94-34-29或94-(34+29)b.教科書第7頁練習一的第3題。讓學生自己分析題目的已知條件和問題,然后用兩種方法列式解答。58-6-7或58-(6+7)[第2題和第3題是配合例2設計的。教學時先讓學生說明圖意,然后思考要解決的問題。著重練習如何正確使用小括號,同時對學生進行環(huán)保意識的教育。]9.作業(yè)安排①.新型電腦公司有87臺電腦,上午賣出19臺,下午賣出26臺,還剩下多少臺?(用兩種方法解答)②.班級里有22張臘光紙,又買來27張。開聯歡會時用去38張,還剩下多少張?③.少年宮新購進小提琴52把,中提琴比小提琴少20把,兩種琴一共有多少把?④.一輛公共汽車里有36位乘客,到福州路下去8位,又上來12位,這時車上有多少位?
◆重要圖釋1、圖2.4“洞庭湖及荊江地區(qū)飛機遙感影像”圖此圖為飛機遙感影像成像后利用地理信息系統(tǒng)在室內分析處理而成。飛機遙感時正值陰雨天氣,雖然圖面較暗,但地物仍然具有較高的分辨率。圖中湖、河等水域為黑色。居民點的顏色為淺灰色,農田格局依稀可見。2、圖2.5“洞庭湖及荊江地區(qū)衛(wèi)星遙感影像”圖此圖為衛(wèi)星遙感影像成像后利用地理信息系統(tǒng)在室內分析處理而成。圖中深色的范圍表示水體,城市呈灰白色。圖中看不出農田的格局,說明衛(wèi)星遙感對地物的分辨率沒有飛機遙感高?!緦W習策略】由于3S技術涉及計算機技術、地球科學、信息科學、系統(tǒng)科學等多個領域,技術含量高、綜合性強,對于高中生來說,比較難理解,所以,本節(jié)課在介紹有關技術時,可借助教材中的流程圖和影像圖片。教師應采用多媒體輔助教學手段,增強學生對“3S”技術的直觀認識。
兩道例題,第一道題師生共同分析,第二道題學生自己分析。部分學生在運用方程解答問題時,等量關系的尋找還是有困難,規(guī)范解題不夠合理,仍需在作業(yè)過程中教師給予適當的指導。四、課堂小結這節(jié)課我們學習了有關打折銷售的知識,其實類似的問題我們小學也遇到過,今天在分析實際問題時又用到了列表法,通過這節(jié)課的學習,談談你在知識方面的收獲。提示學生通過對《日歷中的方程》《我變高了》以及本節(jié)《打折銷售》學習還有以往經驗,讓學生分組討論,用一元一次方程解決實際問題的一般步驟是什么?目的:讓學生進一步體會方程的作用,這里教師又提到學生的小學學習,目的是想提示學生,將今天的方程解法與小學學過的算術方法相對比。此活動的目的是使學生不再處于被動狀態(tài),而成為積極的發(fā)現者。
方法總結:讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據公式建立起方程即可.解:設原價為x元,根據題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結:典例關系:售價=進價+利潤,售價=原價×打折數×0.1,售價=進價×(1+利潤率).三、板書設計本節(jié)課從和我們的生活息息相關的利潤問題入手,讓學生在具體情境中感受到數學在生活實際中的應用,從而激發(fā)他們學習數學的興趣.根據“實際售價=進價+利潤”等數量關系列一元一次方程解決與打折銷售有關的實際問題.審清題意,找出等量關系是解決問題的關鍵.另外,商品經濟問題的題型很多,讓學生觸類旁通,達到舉一反三,靈活的運用有關的公式解決實際問題,提高學生的數學能力.
解:(1)設x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結:環(huán)形問題中的相等關系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學過程中,通過對開放性問題的探討與交流,體驗生活中數學的應用與價值,感受數學與人類生活的密切聯系,激發(fā)學生學習數學的興趣,培養(yǎng)學生的創(chuàng)新意識、團隊精神和克服困難的勇氣.
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學生的識圖能力,可根據學生情況和上課情況適當調整。說明:練習注意了問題的梯度,由淺入深,一步步引導學生從不同的圖象中獲取信息,對同學的回答,教師給予點評,對回答問題暫時有困難的同學,教師應幫助他們樹立信心。第四環(huán)節(jié):課時小結內容:本節(jié)課我們學習了一次函數圖象的應用,在運用一次函數解決實際問題時,可以直接從函數圖象上獲取信息解決問題,當然也可以設法得出各自對應的函數關系式,然后借助關系式完全通過計算解決問題。通過列出關系式解決問題時,一般首先判斷關系式的特征,如兩個變量之間是不是一次函數關系?當確定是一次函數關系時,可求出函數解析式,并運用一次函數的圖象和性質進一步求得我們所需要的結果.
方法總結:要認真觀察圖象,結合題意,弄清各點所表示的意義.探究點二:一次函數與一元一次方程一次函數y=kx+b(k,b為常數,且k≠0)的圖象如圖所示,根據圖象信息可求得關于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數經過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結:此題主要考查了一次函數與一元一次方程的關系,關鍵是正確利用待定系數法求出一次函數的關系式.三、板書設計一次函數的應用單個一次函數圖象的應用一次函數與一元一次方程的關系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數與一元一次方程的關系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.
內容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復習公理:兩點之間線段最短;情景2的創(chuàng)設引入新課,激發(fā)學生探究熱情.效果:從學生熟悉的生活場景引入,提出問題,學生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎.第二環(huán)節(jié):合作探究內容:學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線.讓學生發(fā)現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結:解此類題要先求得頂點的坐標,即兩個一次函數的交點和它們分別與x軸、y軸交點的坐標.三、板書設計兩個一次函數的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數圖象獲取信息,解決簡單的實際問題,在函數圖象信息獲取過程中,進一步培養(yǎng)學生的數形結合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數學應用意識.
學習目標1.掌握兩個一次函數圖像的應用;(重點)2.能利用函數圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關系如圖所示.請你根據圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數圖象如下所示,結合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
第三環(huán)節(jié):課堂小結活動內容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經》,可以在網上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。
解:設甲班的人數為x人,乙班的人數為y人,根據題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數為48人,乙班的人數為45人.方法總結:設未知數時,一般是求什么,設什么,并且所列方程的個數與未知數的個數相等.解這類問題的應用題,要抓住題中反映數量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數學問題情景,學生體會到數學中的“趣”;進一步強調數學與生活的聯系,突出顯示數學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數學學習的成功體驗,激發(fā)學生對數學學習的好奇心,進一步形成積極參與數學活動、主動與他人合作交流的意識.