教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果 10
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果 10
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 8.3 兩條直線的位置關系(一) *創(chuàng)設情境 興趣導入 【知識回顧】 我們知道,平面內兩條直線的位置關系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時,“同位角相等”是“這兩條直線平行”的充要條件. 【問題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考*動腦思考 探索新知 【新知識】 當兩條直線、的斜率都存在且都不為0時(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過來,如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當直線、的斜率都是0時(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當兩條直線、的斜率都不存在時(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時,兩條直線相交. 由上面的討論知,當直線、的斜率都存在時,設,,則 兩個方程的系數(shù)關系兩條直線的位置關系相交平行重合 當兩條直線的斜率都存在時,就可以利用兩條直線的斜率及直線在y軸上的截距,來判斷兩直線的位置關系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說明 引領 分析 仔細 分析 講解 關鍵 詞語 思考 理解 思考 理解 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.2 直線與直線、直線與平面、平面與平面平行的判定與性質 *創(chuàng)設情境 興趣導入 觀察圖9?13所示的正方體,可以發(fā)現(xiàn):棱與所在的直線,既不相交又不平行,它們不同在任何一個平面內. 圖9?13 觀察教室中的物體,你能否抽象出這種位置關系的兩條直線? 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 2*動腦思考 探索新知 在同一個平面內的直線,叫做共面直線,平行或相交的兩條直線都是共面直線.不同在任何一個平面內的兩條直線叫做異面直線.圖9-13所示的正方體中,直線與直線就是兩條異面直線. 這樣,空間兩條直線就有三種位置關系:平行、相交、異面. 將兩支鉛筆平放到桌面上(如圖9?14),抬起一支鉛筆的一端(如D端),發(fā)現(xiàn)此時兩支鉛筆所在的直線異面. 桌子 B A C D 兩支鉛筆 圖9 ?14(請畫出實物圖) 受實驗的啟發(fā),我們可以利用平面做襯托,畫出表示兩條異面直線的圖形(如圖9 ?15). (1) (2) 圖9?15 利用鉛筆和書本,演示圖9?15(2)的異面直線位置關系. 講解 說明 引領 分析 仔細 分析 關鍵 語句 思考 理解 記憶 帶領 學生 分析 5
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.3 直線與直線、直線與平面、平面與平面所成的角 *創(chuàng)設情境 興趣導入 在圖9?30所示的長方體中,直線和直線是異面直線,度量和,發(fā)現(xiàn)它們是相等的. 如果在直線上任選一點P,過點P分別作與直線和直線平行的直線,那么它們所成的角是否與相等? 圖9?30 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 5*動腦思考 探索新知 我們知道,兩條相交直線的夾角是這兩條直線相交所成的最小的正角. 經(jīng)過空間任意一點分別作與兩條異面直線平行的直線,這兩條相交直線的夾角叫做兩條異面直線所成的角. 如圖9?31(1)所示,∥、∥,則與的夾角就是異面直線與所成的角.為了簡便,經(jīng)常取一條直線與過另一條直線的平面的交點作為點(如圖9?31(2)) (1) 圖9-31(2) 講解 說明 引領 分析 仔細 分析 關鍵 語句 思考 理解 記憶 帶領 學生 分析 12*鞏固知識 典型例題 例1 如圖9?32所示的長方體中,,求下列異面直線所成的角的度數(shù): (1) 與; (2) 與 . 解 (1)因為 ∥,所以為異面直線與所成的角.即所求角為. (2)因為∥,所以為異面直線與所成的角. 在直角△中 ,, 所以 , 即所求的角為. 說明 強調 引領 講解 說明 觀察 思考 主動 求解 通過例題進一步領會 17
解析:先利用正比例函數(shù)解析式確定A點坐標,然后觀察函數(shù)圖象得到,當1<x<2時,直線y=2x都在直線y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,則A點坐標為(1,2),∴當x>1時,2x>kx+b.∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(2,0),即不等式0<kx+b<2x的解集為1<x<2.故選C.方法總結:本題考查了一次函數(shù)與一元一次不等式的關系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在y軸上(或下)方部分所有的點的橫坐標所構成的集合.三、板書設計1.通過函數(shù)圖象確定一元一次不等式的解集2.一元一次不等式與一次函數(shù)的關系本課時主要是掌握運用一次函數(shù)的圖象解一元一次不等式,在教學過程中采用講練結合的方法,讓學生充分參與到教學活動中,主動、自主的學習.
2.送信。實物投影儀演示反饋。(1)方法說明。你是怎么想的?(2)錯誤糾正。分層校對:做完的先互相批改,然后集體先校對丁當組題,再校對一休組題。重點講評一休組題目。六、總結今天你有哪些收獲?(1)退位減法要注意什么?不要忘記退位。(2)退位減法的方法。為學生提供學習材料,讓學生通過活動聯(lián)系生活實際學習新知,讓學生感受到數(shù)學源于生活,用于生活;采用分層教學,整個學習過程都是學生在小組中合作研究、探索中完成的;然后通過多種形式的練習加以鞏固;注重學習過程的開放;通過小組合作,培養(yǎng)學生善于發(fā)表自己的觀點,會傾聽同學的意見的能力。同時也培養(yǎng)學生學會提出問題、解決問題的能力。
四、課堂小結今天我們一起研究了什么問題?板書課題:求一個數(shù)比另一個數(shù)多幾的應用題解答這樣的問題,應該怎樣進行分析?在老師的提問下,學生回憶分析思路。最后,小結上課時男女學生小旗的情況,得出數(shù)目后問:你能根據(jù)今天學習的內容提出問題并列式計算嗎?教學反思:求一個數(shù)比另一個數(shù)多幾的應用題,本節(jié)課屬于計算教學。傳統(tǒng)的計算教學往往只注重算理、單一的算法及技能訓練,比較枯燥。依據(jù)新的數(shù)學課程標準,在本節(jié)課的教學設計上,創(chuàng)設生動具體的教學情境,使學生在愉悅的情景中學習數(shù)學知識。鼓勵學生獨立思考、自主探索和合作交流。尊重學生的個體差異,滿足多樣化的學習需求。 在課堂過程中,還有小部分學生不能充分地展開自己的思維,得到有效的學習效果,讓所有的學生基本都學會如何去展現(xiàn)自己的有效的學習方式,這是我的教學目標。
[設計意圖:鞏固減法的意義,培養(yǎng)學生初步的思維能力。](2)組織學生自己先算一算,教師巡視,捕捉學生學習信息,糾正不良學習習慣。[設計意圖:通過巡視,及時捕捉學生的學習信息,發(fā)現(xiàn)問題及時解決;把培養(yǎng)學生良好的計算習慣、審題習慣及檢查習慣落到實處。](3)組織學生全班交流計算方法。組織學生在全班交流解決計算“32-2=”的方法,引導學生理解“32是由3個十和2個一組成,從32里去掉2,就剩3個十,所以32減2等于30”。如果學生用其他的方法來計算,只要正確,也要肯定。[設計意圖:同前面一樣,鞏固數(shù)的組成,訓練每一個學生“述說整十數(shù)加一位數(shù)相應減法的計算過程”,突破難點。]3.加減法對比組織學生比較“30+2=32”和“32-2=30”,并說一說有什么發(fā)現(xiàn),使學生認識到“3個十和2個一組成32,所以30加2等于32;反過來,32是由3個十和2個一組成,從32里去掉2,就剩3個十,所以32減2等于30”[設計意圖:強化加減法意義的聯(lián)系,培養(yǎng)學生初步的思維能力。]
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結:此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質,解題的關鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥.判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手.在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
解析:(1)根據(jù)題設條件,求出等量關系,列一元一次方程即可求解;(2)根據(jù)題設中的不等關系列出相應的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數(shù)9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設計一元一次不等式與一次函數(shù)關系的實際應用分類討論思想、數(shù)形結合思想本課時結合生活中的實例組織學生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學生分析、解決問題的能力,從新課到練習都充分調動了學生的思考能力,為后面的學習打下基礎.
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結:解答本題的關鍵是注意審題,將實際問題轉化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學知識解答實際問題的能力.三、板書設計二次函數(shù)y=ax2+bx+c的圖象與性質1.二次函數(shù)y=ax2+bx+c的圖象與性質2.二次函數(shù)y=ax2+bx+c的應用
1.使學生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質的過程,理解二次函數(shù)y=ax2+bx+c的性質。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數(shù)y=ax2+bx+c(a≠0)的性質以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
【教學目標】(一)教學知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認識和理解二次函數(shù) 的性質;比較兩者的異同.(二)能力訓練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質的過程,獲得利用圖象研究函數(shù)性質的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導學流程】 一、自主預習(用時15分鐘)1.創(chuàng)設教學情境我們在教學了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質.而上節(jié)課我們所學的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究
(3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結:解決本題的關鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關系式后運用函數(shù)性質來解.三、板書設計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關系3.二次函數(shù)y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結:畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側,再利用對稱性畫另一側.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結:熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關性質(開口方向、對稱軸、頂點坐標等)是解決問題的關鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
一團綠火像鎂光似的在保爾眼前一閃,耳邊響起了一聲巨雷,燒紅的鐵片灼傷了他的腦袋。大地可怕地、不可思議地旋轉起來,開始緩緩地向一旁倒下去。保爾像一根稻草似的被甩離了馬鞍,越過馬頭,重重地摔倒在地。師:在那血與火的戰(zhàn)爭年代,保爾馳騁疆場,為革命事業(yè)浴血奮戰(zhàn),不懼犧牲。他那鋼鐵般的意志是在戰(zhàn)火紛飛的疾苦中千錘百煉而成的。3.面對疾病師:病痛沒有擊垮保爾,面對自身的疾病,他是這樣的——片段一:“……我受到一次又一次的打擊。一次打擊過后,我剛站起來,另一次打擊,比上一次更無情的打擊又來了。最可怕的是我無力反擊。先是左臂不聽使喚。這已經(jīng)是夠痛苦的了,誰知緊接著兩條腿也不能活動。我原本就只能在室內勉強走動,現(xiàn)在甚至從床沿挪到桌子跟前也異常困難。可是,恐怕這還不算最糟的。明天會怎么樣?誰也無法預料……”
“拱一拱手,一屁股就坐在上席”,兩個動作活畫出了夏總甲在鄉(xiāng)民面前的傲慢自大。作者接著寫他的一番話語:“俺如今倒不如你們務農(nóng)的快活了。想這新年大節(jié),老爺衙門里,三班六房,那一位不送帖子來。我怎好不去賀節(jié)?每日騎著這個驢,上縣下鄉(xiāng),跑得昏頭暈腦?!薄皬男履赀@七八日,何曾得一個閑?恨不得長出兩張嘴來,還吃不退。”巧妙地揭示了他為何目中無人和衣服“就如酒簍一般”。二、通過故事情節(jié)的前后對比來表達諷刺。第二回中,周進六十多歲了,還以老童生的身份在薛家集觀音庵教私塾,一年才十二兩館銀,生活窘困,地位低下,村中新中秀才青年梅玖也奚落他。到第七回中,周進中了進士,做了官以后,梅玖就無恥地冒充自己是周進的學生,薛家集的觀音庵里也供起了周進的長生牌位。梅玖見了周進早年寫的一副對聯(lián),貼在墻上,紅紙都發(fā)白了,竟吩咐和尚用水噴了,剝下來裝裱收藏。這一對比既寫出了周進做官前后迥然不同的境遇,也寫出了秀才梅玖的庸俗勢利以及社會上一些人的趨炎附勢。所以,《儒林外史》的諷刺,不僅僅是對人物的諷刺,更是對當時社會中各種現(xiàn)象的揭露、控訴和批判。
師:對。具體說一說沼氣池在這個系統(tǒng)中為什么居于核心紐帶地位。生:因為沼氣池充分利用了生產(chǎn)過程的廢料,實現(xiàn)了清潔生產(chǎn),減少了浪費和污染,而且很好地實現(xiàn)了生態(tài)循環(huán)。師:不錯!留民營生態(tài)農(nóng)業(yè)的實質就是:地盡其利,物盡其用,最大限度地循環(huán)利用資源和消除環(huán)境污染,達到節(jié)約、高效的目的,真正實現(xiàn)了生態(tài)效益、經(jīng)濟效益、社會效益三方面的高度統(tǒng)一,實現(xiàn)了可持續(xù)發(fā)展。師:實施可持續(xù)發(fā)展戰(zhàn)略必須依靠公眾的支持和參與,我們每一個人都應該從自身做起,那我們可以在日常生活中可以采取哪些有益于可持續(xù)發(fā)展的行動? 生1:節(jié)約糧食、愛惜糧食。生2:不亂扔垃圾,垃圾分類回收。生3:不開“無人燈”。生4:節(jié)約用電、用水。生5:減少空調的使用,在冬夏季分別降低、提高空調溫度的設置。