意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國熱情;(2)學(xué)生加強(qiáng)了對數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國數(shù)學(xué)成就不夠強(qiáng),還應(yīng)發(fā)奮努力.有同學(xué)能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對本節(jié)課的感受并進(jìn)行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結(jié)合思想,學(xué)生對勾股定理的歷史的感悟及對勾股定理應(yīng)用的認(rèn)識等等.
1.了解演講者的觀點,領(lǐng)悟格物致知精神的內(nèi)涵。2.梳理演講者的思路,把握演講詞層層推進(jìn)的結(jié)構(gòu)。 一、導(dǎo)入新課 1974年,美籍華裔物理學(xué)家丁肇中向全世界宣布發(fā)現(xiàn)J粒子,開辟了人們認(rèn)識微觀世界的新境界,并因此于1976年獲得了諾貝爾物理學(xué)獎,成為首位用中文在諾獎頒獎典禮上發(fā)表演講的科學(xué)家,引起了世界的轟動。請同學(xué)們閱讀下面這則材料,了解他取得這項偉大成就的經(jīng)歷。1974年以前,人們認(rèn)為基本粒子都可以歸納為三種夸克。丁肇中對此持懷疑態(tài)度,但他想進(jìn)行實驗的想法卻遭到了幾乎所有國家大型實驗室的反對。最終,他在美國布魯克海文國家實驗室開展了實驗,經(jīng)過兩年多夜以繼日地實驗,終于發(fā)現(xiàn)了一種未曾預(yù)料過的新的基本粒子——J粒子,而它來自第四夸克。他的發(fā)現(xiàn)推翻了過去認(rèn)為世界只由三種夸克組成的理論,為人類認(rèn)識微觀世界開辟了一個新的境界,被稱為“物理學(xué)的十一月革命”。丁肇中也因此項發(fā)現(xiàn)在1976年獲得了諾貝爾物理學(xué)獎。
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
課件出示:(1)我的小報設(shè)計構(gòu)想:古典名著是我最喜歡的讀本,除了老師規(guī)定的板塊設(shè)計外,我增加了“人物形象我評說”的新板塊,我畫了人物簡筆畫,畫面配上了簡潔的評語……(2)我的小小說《找錢》:我先讀一讀我的小說,再說一說我創(chuàng)作小說的經(jīng)驗?!瓉G錢是我們生活中常有的事情,材料就選自我們身邊。找錢的過程最好安排得一波三折,情節(jié)要有波瀾,我把兩個身邊同學(xué)丟錢找錢的事情融合在一起,通過三次滿懷希望的尋找和三次失望的轉(zhuǎn)折,使得小說情節(jié)引人入勝。小說中大量的人物心理描寫,凸顯了人物性格——疑神疑鬼,沒心沒肺。最后小說的結(jié)尾出人意料,卻又在情理之中……【設(shè)計意圖】綜合性學(xué)習(xí)的匯報課,檢查學(xué)生自主探究學(xué)習(xí)的成果。四小組分四個不同的板塊分別匯報,內(nèi)容清晰,任務(wù)明確。有個人匯報評價得分,也有小組綜合評價得分,評出優(yōu)勝者和優(yōu)勝小組。通過競爭激發(fā)課堂活力,通過合作增強(qiáng)集體榮譽感,通過展示刺激表現(xiàn)欲,讓學(xué)生成為真正的課堂主人。
方法總結(jié):絕對值小于1的數(shù)也可以用科學(xué)記數(shù)法表示,一般形式為a×10-n,其中1≤a<10,n為正整數(shù).與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)前面的0的個數(shù)所決定.【類型二】 將用科學(xué)記數(shù)法表示的數(shù)還原為原數(shù)用小數(shù)表示下列各數(shù):(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數(shù)點向左移動相應(yīng)的位數(shù)即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結(jié):將科學(xué)記數(shù)法表示的數(shù)a×10-n還原成通常表示的數(shù),就是把a的小數(shù)點向左移動n位所得到的數(shù).三、板書設(shè)計用科學(xué)記數(shù)法表示絕對值小于1的數(shù):一般地,一個小于1的正數(shù)可以表示為a×10n,其中1≤a<10,n是負(fù)整數(shù).從本節(jié)課的教學(xué)過程來看,結(jié)合了多種教學(xué)方法,既有教師主導(dǎo)課堂的例題講解,又有學(xué)生主導(dǎo)課堂的自主探究.課堂上學(xué)習(xí)氣氛活躍,學(xué)生的學(xué)習(xí)積極性被充分調(diào)動,在拓展學(xué)生學(xué)習(xí)空間的同時,又有效地保證了課堂學(xué)習(xí)質(zhì)量
1.能從統(tǒng)計圖中獲取信息,并求出相關(guān)數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點)2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點)一、情境導(dǎo)入某次射擊比賽,甲隊員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數(shù),再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護(hù)局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
分組討論,交流體會師:小朋友們玩得開心嗎?生:太開心了!師:把你最開心的地方說給小組的其他小朋友聽一聽好嗎?每一個小組選一個說得最好的在班上交流。生1:我剛才和我同桌玩的是“反口令”游戲。這個游戲很簡單,就是按照口令相反的動作做才對。比如剛才,我讓他“摸左耳”,他就得摸右耳,又讓他“抬左腿”,他就得抬右腿。當(dāng)我說道“閉左眼”的時候他就聽話了,哈哈!結(jié)果他就是這么失敗的!生2:這個游戲真考驗人的反應(yīng)??!生3:我們六個人玩的是“蹲蹲游戲”。我們每個人代表一個詞語:蘿卜、白菜、西瓜、土豆、蘋果、橘子。我們站成一排,我代表蘿卜,我就一邊蹲一邊先喊:“蘿卜蹲,蘿卜蹲,蘿卜蹲完西瓜蹲?!贝砦鞴系娜笋R上就得接上,一邊蹲一邊隨機(jī)指定下個人:“西瓜蹲,西瓜蹲,西瓜蹲完蘋果蹲。”然后就這樣代表蘋果的同學(xué)再往下接力,誰沒接上誰就輸了。
活動目標(biāo):1、嘗試了解各種不同的交通標(biāo)志圖,正確表達(dá)它們各自的作用。2、體驗游戲的快樂,樂于遵守交通規(guī)則。活動準(zhǔn)備:1、幼兒收集有關(guān)“交通標(biāo)志圖”的信息圖片。2、立體的交通標(biāo)志(停車標(biāo)志、信號燈、左右轉(zhuǎn)彎標(biāo)志)。3、自制信號燈(紅色八盞、綠色八盞)。4、 “十字路口”場景布置?;顒与y點:解讀交通標(biāo)志圖?;顒又攸c:讓幼兒明白如何正確穿越“十字路口”。活動過程:1、 “前些日子,老師請小朋友在馬路上仔細(xì)尋找各類交通標(biāo)志圖,并畫了下來,謝謝你們。今天,我們開展一個“交通標(biāo)志圖”的交流會,請小朋友把各自找到的標(biāo)志圖展示出來,并要用自己的語言完整講述,讓我們聽明白這個標(biāo)志圖所表達(dá)的含義?!?、幼兒自由交流,展示標(biāo)志圖,表達(dá)具體含義。
教學(xué)內(nèi)容4.4.1 對數(shù)函數(shù)及其圖像與性質(zhì)教學(xué)時間 (不超過3課時)2課時授課類型新授課班級 日期 教學(xué)目標(biāo)知識目標(biāo):掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),并會簡單的應(yīng)用.能力目標(biāo):觀察對數(shù)函數(shù)的圖像,總結(jié)對數(shù)函數(shù)的性質(zhì),培養(yǎng)觀察能力.情感目標(biāo):)體味對數(shù)函數(shù)的認(rèn)知過程,樹立嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣.教學(xué)重點對數(shù)函數(shù)的圖像及性質(zhì).教學(xué)難點對數(shù)函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過程,培養(yǎng)數(shù)形結(jié)合的思想.教法學(xué)法這節(jié)課主要采用啟發(fā)式和引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法。⑴ 實例引入知識,提升學(xué)生的求知欲;⑵ “描點法”作圖與軟件的應(yīng)用相結(jié)合,有助于觀察得到指數(shù)函數(shù)的性質(zhì); ⑶知識的鞏固與練習(xí),培養(yǎng)學(xué)生的思維能力;通過教師在教學(xué)過程中的點撥,啟發(fā)學(xué)生通過主動觀察、主動思考、動手操作、自主探究來達(dá)到對知識的發(fā)現(xiàn)和接受.課前準(zhǔn)備1.備教材、備學(xué)生 2.PPT課件 3.五環(huán)四步教學(xué)模式教案教 學(xué) 過 程環(huán)節(jié)教師活動師生活動預(yù)期效果一環(huán) 學(xué)情 動員某種物質(zhì)的細(xì)胞分裂,由1個分裂成2個,2個分裂成4個,……,那么,知道分裂得到的細(xì)胞個數(shù)如何求得分裂次數(shù)呢? 設(shè)1個細(xì)胞經(jīng)過y次分裂后得到x個細(xì)胞,則x與y的函數(shù)關(guān)系是,寫成對數(shù)式為,此時自變量x位于真數(shù)位置.師:根據(jù)式,給定一個x值(經(jīng)過的次數(shù)),就能計算出唯一的函數(shù)值y.實際上,在這個問題中知道的是y的值,要求的是對應(yīng)的x值.所以用對數(shù)形式表示, 通常我們用x表示自變量,用y表示因變量, 易于學(xué)生想象領(lǐng)會函數(shù)意義二環(huán)問題 診斷一般地,形如的函數(shù)叫以為底的對數(shù)函數(shù),其中a>0且a≠1.對數(shù)函數(shù)的定義域為,值域為R. 例如、、都是對數(shù)函數(shù). 教師引導(dǎo)學(xué)生聯(lián)系上面“情景問題”的表達(dá)式,請同學(xué)們思考討論對數(shù)函數(shù)的概念. 師:(1) 為什么規(guī)定 a>0且 a≠1? (2) 為什么對數(shù)函數(shù)的定義域是(0,+∞)? 指導(dǎo)體會對數(shù)函數(shù)的特點。讓學(xué)生牢記底數(shù)大于零且不等于1,真數(shù)大于零.
【教學(xué)目標(biāo)】知識目標(biāo):⑴ 理解指數(shù)函數(shù)的圖像及性質(zhì);⑵ 了解指數(shù)模型,了解指數(shù)函數(shù)的應(yīng)用.能力目標(biāo):⑴ 會畫出指數(shù)函數(shù)的簡圖;⑵ 會判斷指數(shù)函數(shù)的單調(diào)性;⑶了解指數(shù)函數(shù)在生活生產(chǎn)中的部分應(yīng)用,從而培養(yǎng)學(xué)生分析與解決問題能力.【教學(xué)重點】⑴ 指數(shù)函數(shù)的概念、圖像和性質(zhì);⑵ 指數(shù)函數(shù)的應(yīng)用實例.【教學(xué)難點】指數(shù)函數(shù)的應(yīng)用實例.【教學(xué)設(shè)計】⑴ 以實例引入知識,提升學(xué)生的求知欲;⑵ “描點法”作圖與軟件的應(yīng)用相結(jié)合,有助于觀察得到指數(shù)函數(shù)的性質(zhì);⑶知識的鞏固與練習(xí),培養(yǎng)學(xué)生的思維能力;⑷實際問題的解決,培養(yǎng)學(xué)生分析與解決問題的能力;⑸以小組的形式進(jìn)行討論、探究、交流,培養(yǎng)團(tuán)隊精神.【教學(xué)備品】教學(xué)課件.【課時安排】2課時.(90分鐘)【教學(xué)過程】 教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 4.2指數(shù)函數(shù). *創(chuàng)設(shè)情景 興趣導(dǎo)入 問題 某種物質(zhì)的細(xì)胞分裂,由1個分裂成2個,2個分裂成4個,4個分裂成8個,……,知道分裂的次數(shù),如何求得細(xì)胞的個數(shù)呢? 解決 設(shè)細(xì)胞分裂次得到的細(xì)胞個數(shù)為,則列表如下: 分裂次數(shù)x123…x…細(xì)胞個數(shù)y2=4=8=…… 由此得到, . 歸納 函數(shù)中,指數(shù)x為自變量,底2為常數(shù). 介紹 播放 課件 質(zhì)疑 引導(dǎo) 分析 了解 觀看 課件 思考 領(lǐng)悟 導(dǎo)入 實例 比較 易于 學(xué)生 想象 歸納 領(lǐng)會 函數(shù) 的變 化意 義 5
課題名稱4.1實數(shù)指數(shù)冪授課班級 授課時間13機(jī)電1課題序號 授課課時第 到 授課形式啟發(fā)、類比使用教具課件教學(xué)目的1.識記n次方根的概念,能區(qū)分奇次方根、偶次方根和n次根算式根。 2.能描述分?jǐn)?shù)指數(shù)冪的定義,會進(jìn)行根式與分?jǐn)?shù)指數(shù)冪的互化。 3.識記有理數(shù)指數(shù)冪的運算性質(zhì),會進(jìn)行簡單的有理數(shù)指數(shù)冪的運算。教學(xué)重點有理數(shù)指數(shù)冪的運算、實數(shù)指數(shù)冪的綜合運算教學(xué)難點有理數(shù)指數(shù)冪的運算、實數(shù)指數(shù)冪的綜合運算更新、補 充、刪減 內(nèi)容無課外作業(yè) 1.P 96 習(xí)題。 授課主要內(nèi)容或板書設(shè)計實數(shù)指數(shù)冪 概念 思考交流 例題 課堂小結(jié) 問題解決 練習(xí) 教學(xué)后記
(1)請你用代數(shù)式表示水渠的橫斷面面積;(2)計算當(dāng)a=3,b=1時,水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計教學(xué)過程中,應(yīng)通過活動使學(xué)生感知代數(shù)式運算在判斷和推理上的意義,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅實的基礎(chǔ).
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)的運算法則進(jìn)行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負(fù)整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時要多舉幾個例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗自主探究的樂趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標(biāo),即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標(biāo).三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進(jìn)一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負(fù)半軸上,∴B點的坐標(biāo)為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個已知點的坐標(biāo),然后運用待定系數(shù)法將兩點的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達(dá)式某商店售貨時,在進(jìn)價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時的售價.
探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。鍟O(shè)計1.函數(shù)與圖象之間是一一對應(yīng)的關(guān)系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對應(yīng)關(guān)系.
解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標(biāo)為(-53,-3).三、板書設(shè)計反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時,兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時,兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點、連線(描點法)通過學(xué)生自己動手列表、描點、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動的空間.
如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設(shè)計反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時,在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時,在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動中,增強(qiáng)他們對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標(biāo)為-7,∴點C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
如圖,課外數(shù)學(xué)小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進(jìn)而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.