教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時,不妨設(shè)角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對應(yīng)的邊長分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時,同樣可以得到這個結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點 40
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同的機(jī)票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機(jī)票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機(jī)票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機(jī)票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上海→重慶. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題方法 20
一、定義: ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標(biāo)),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標(biāo)等于二項式指數(shù);上標(biāo)等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).
重點分析:本節(jié)課的重點是離散型隨機(jī)變量的概率分布,難點是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
課程課題隨機(jī)事件和概率授課教師李丹丹學(xué)時數(shù)2授課班級 授課時間 教學(xué)地點 背景分析正確使用兩個基本原理的前提是要學(xué)生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學(xué)生是容易理解的,問題在于怎樣合理地進(jìn)行分類和分步教學(xué)中給出的練習(xí)均在課本例題的基礎(chǔ)上稍加改動過的,目的就在于幫助學(xué)生對這一知識的理解與應(yīng)用 學(xué)習(xí)目標(biāo) 設(shè) 定知識目標(biāo)能力(技能)目標(biāo)態(tài)度與情感目標(biāo)1、理解隨機(jī)試驗、隨機(jī)事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機(jī)試驗、隨機(jī)事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運算 了解學(xué)習(xí)本章的意義,激發(fā)學(xué)生的興趣. 學(xué)習(xí)任務(wù) 描 述 任務(wù)一,隨機(jī)試驗、隨機(jī)事件、必然事件、不可能事件等概念 任務(wù)二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【實驗】 商店進(jìn)了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學(xué)生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實驗中,這批蘋果的質(zhì)量是研究對象的總體,每個蘋果的質(zhì)量是研究的個體. 講解 說明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學(xué)生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學(xué)生上學(xué)期數(shù)學(xué)期末考試成績,指出其中的總體與個體. 解 該班所有學(xué)生的數(shù)學(xué)期末考試成績是總體,每一個學(xué)生的數(shù)學(xué)期末考試成績是個體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個體. 說明 強(qiáng)調(diào) 引領(lǐng) 觀察 思考 主動 求解 通過例題進(jìn)一步領(lǐng)會 35
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 10.4 用樣本估計總體 *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識回顧】 初中我們曾經(jīng)學(xué)習(xí)過頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個組內(nèi)的個數(shù). 【知識鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機(jī)抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點,將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設(shè)定分點數(shù)值時需要考慮分點值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計3030 介紹 質(zhì)疑 引領(lǐng) 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學(xué)生思考 0 10*動腦思考 探索新知 【新知識】 各組內(nèi)數(shù)據(jù)的個數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個數(shù)之比叫做該組的頻率. 計算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計301.000 根據(jù)頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對應(yīng)矩形的面積. 【想一想】 各小矩形的面積之和應(yīng)該等于1.為什么呢? 【新知識】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測,去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計總體中某事件發(fā)生的概率.樣本選擇得恰當(dāng),這種估計是比較可信的. 如上所述,用樣本的頻率分布估計總體的步驟為: (1) 選擇恰當(dāng)?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語句 觀察 理解 記憶 帶領(lǐng) 學(xué)生 分析 25
經(jīng)濟(jì)因素對人口遷移是主要的,經(jīng)常起作用的因素,是人口遷移的基本動因。通常情況下,經(jīng)濟(jì)發(fā)展水平的差異決定著人們遷移的方向,人們遷移是為了追求更好的就業(yè)機(jī)會和更高的經(jīng)濟(jì)收入。經(jīng)濟(jì)發(fā)展水平高的地區(qū)往往成為人口遷入地,人口的遷移量取決于遷入地對勞動力的需求狀況和遷出地人口相對過剩的狀況。師:20世紀(jì)80年代深圳、珠海等地設(shè)立了經(jīng)濟(jì)特區(qū)’吸I了大量的人口遷入。這又說明了什么問題? (生回答,師總結(jié))從宏觀上看,經(jīng)濟(jì)布局也會造成大量的人口遷移。說明經(jīng)濟(jì)越發(fā)達(dá),對人口的吸引力(即拉力)越大。經(jīng)濟(jì)發(fā)展水平、規(guī)模和速度決定著人口遷移的流向、流量和流速。師:交通和通訊又如何影響著人口的遷移呢?生:交通和通訊的發(fā)展,縮小了地區(qū)之間的距離,促進(jìn)了人口遷移。
【課標(biāo)要求】以某流域為例,分析該流域開發(fā)的地理條件?!菊n標(biāo)解讀】以田納西河流域為實例,從流域位置、自然環(huán)境、自然資源、人口、社會經(jīng)濟(jì)基礎(chǔ)等方面,分析該流域開發(fā)的地理條件?!緦W(xué)習(xí)目標(biāo)】1、讀圖并結(jié)合課文分析田納西河流域的位置、氣候、水文、地貌、自然資源等自然條件。2、閱讀課文分析田納西河流域的人口、社會經(jīng)濟(jì)基礎(chǔ)等社會經(jīng)濟(jì)條件?!窘虒W(xué)重點】讀圖并結(jié)合課文分析田納西河流域的位置、氣候、水文、地貌、自然資源等自然條件【教學(xué)難點】讀圖并結(jié)合課文分析田納西河流域的氣候、水文條件【教學(xué)資源】田納西河流域的位置圖、流域圖、 世界氣候類型分布圖、沿河剖面圖、礦產(chǎn)資源分布圖
【知能訓(xùn)練】一、選擇題(第1-4題為單項選擇題,第5-6題為雙項選擇題)1、斑點狀土地荒漠化圈主要分布的地方是()A.塔里木河下游綠洲B.呼倫貝爾草原和錫林郭勒草原C.居民點、工礦區(qū)及交通線附近D.科爾沁沙地2、近年來,西北地區(qū)環(huán)境發(fā)展的趨勢是A.隨著人口增加和經(jīng)濟(jì)發(fā)展,綠洲環(huán)境總體趨于好轉(zhuǎn)B.風(fēng)沙活動增強(qiáng),鹽堿地面積增加C.綠洲經(jīng)濟(jì)以農(nóng)業(yè)為主,無環(huán)境污染問題D.隨著人類對環(huán)境影響的加強(qiáng),綠洲環(huán)境向良性方向發(fā)展3、我國沙漠沙地所處緯度最高的是()A.科爾沁沙地B.呼倫貝爾沙地C.古爾班通古特沙漠D.烏蘭布和沙漠4、我國西北地區(qū)干旱為主的自然景觀的主要成因是()A.地處北半球亞洲高壓的范圍之內(nèi)B.地處東南季風(fēng)的背風(fēng)坡C.深居內(nèi)陸又隔崇山峻嶺D.氣候干旱、植被稀少、河短水少
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對復(fù)數(shù)的拓展延伸,這樣更有利于我們對復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實際問題;5.數(shù)學(xué)運算:能夠正確運用復(fù)數(shù)三角形式計算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識到數(shù)學(xué)知識的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復(fù)數(shù)呢?如何表示?
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠(yuǎn);相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學(xué)高一年級女生第25,50,75百分位數(shù)。
第五,蛋白質(zhì)的功能。蛋白質(zhì)功能具有多樣性,由學(xué)生對照教材,進(jìn)行總結(jié)。為什么蛋白質(zhì)有那么多功能呢?根據(jù)我們學(xué)習(xí)生物學(xué)的經(jīng)驗可知道:生物的結(jié)構(gòu)決定功能。再要求剛才的那四個同學(xué)上臺組合多肽鏈。以不同位置組合,就會形成很多種多肽鏈,進(jìn)而形成很多種蛋白質(zhì)。每一種蛋白質(zhì)都有其特定的功能,所以蛋白質(zhì)具有多樣性,其功能也具有多樣性。第六,總結(jié)。蛋白質(zhì)是細(xì)胞和生物體中重要的有機(jī)化合物,是一切生命活動的主要承擔(dān)者。蛋白質(zhì)的多樣性是形形色色生物和絢麗多彩生命活動的物質(zhì)基礎(chǔ)。(可以由學(xué)生總結(jié))第七,教學(xué)評價。由于只有一節(jié)課時間,課堂上對重點、難點知識的解析還不能做到舉一反三的深度,因此盡管學(xué)生課堂反應(yīng)熱烈,對知識點的接受程度也達(dá)到了預(yù)期的要求,但在做課后練習(xí)時,也會出現(xiàn)一些問題。所以傳統(tǒng)的講練結(jié)合還是要結(jié)合起來運用才能取得更好的效果。為此本節(jié)內(nèi)容需要2課時來完成。
(4)提出問題:三種運輸方式有哪些異同 組織學(xué)生分析填表,反饋和糾正.提出問題:影響自由擴(kuò)散,協(xié)助擴(kuò)散和主動運輸速度的主要因素各是什么 畫出細(xì)胞對某物的自由擴(kuò)散,協(xié)助擴(kuò)散和主動運輸速度隨細(xì)胞外濃度的改變而變化的曲線圖組織學(xué)生分組討論,并作圖,展示各組的成果.教學(xué)說明:本環(huán)節(jié)鞏固理論知識是對課本知識擴(kuò)展和對重點,難點內(nèi)容的深入理解和總結(jié),只有理解了三種運輸方式的異同,才能完成本環(huán)節(jié)教學(xué)任務(wù),既突顯書本知識,又培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作的精神,提高學(xué)生制做圖表的能力和抽象化思維能力的形成.2.大分子的運輸引導(dǎo)學(xué)生回憶分泌蛋白的分泌過程,得出胞吐現(xiàn)象,提出問題:那大家知道白細(xì)胞是如何吃掉病菌的嗎 顯示有關(guān)圖片.強(qiáng)調(diào):胞吞和胞吐作用都需要能量提出問題:胞吞和胞吐體現(xiàn)了細(xì)胞膜結(jié)構(gòu)的特點是什么 與書本前面知識相聯(lián)系.(四)技能訓(xùn)練指導(dǎo)學(xué)生就《技能訓(xùn)練》部分進(jìn)行討論五,反饋練習(xí)1.教師小結(jié)幾種運輸方式,特別是自由擴(kuò)散,協(xié)助擴(kuò)散和主動運輸?shù)奶攸c
(3)確立按生產(chǎn)要素分配的意義確立按生產(chǎn)要素分配的原則,是對市場經(jīng)濟(jì)條件下各種生產(chǎn)要素所有權(quán)存在的合理性、合法性的確認(rèn),體現(xiàn)了國家對公民權(quán)利的尊重,對勞動、知識、人才、創(chuàng)造的尊重。有利于讓一切生產(chǎn)要素的活力競相迸發(fā),讓一切創(chuàng)造社會財富的源泉充分涌流,以造福人民。(三)課堂總結(jié)、點評 通過這節(jié)課的學(xué)習(xí),我們懂得了在我國社會主義初級階段,實行以按勞分配為主體、多種分配方式并存的制度,把按勞分配和按生產(chǎn)要素分配結(jié)合起來具有客觀必然性,也有重要的意義。★課余作業(yè) 組織學(xué)生撰寫社會調(diào)查報告,要求學(xué)生調(diào)查自己家里的收入情況,分清哪些收入是按勞分配所得,哪些是非按勞分配收入,并進(jìn)一步分析現(xiàn)在的收入形式與以前相比有哪些變化,這種變化給家庭的生活帶來哪些影響?★教學(xué)體會本節(jié)內(nèi)容是與學(xué)生生活實際密切聯(lián)系的內(nèi)容,在學(xué)習(xí)中應(yīng)該多引入日常生產(chǎn)、生活中常見的一些實例,讓學(xué)生去深刻理解這些知識,并能夠從自己的實踐中理解、把握我國分配政策的合理性。
學(xué)生活動:閱讀課本,找出問題。教師點評:紙幣是由國家發(fā)行的,強(qiáng)制使用的貨幣符號。因為在商品流通中,人們只關(guān)心貨幣能否帶來價值相等的商品,不關(guān)心它本身是否足值,所以,可以用貨幣符號――紙幣,代替它執(zhí)行流通手段職能。這樣就產(chǎn)生了紙幣。教師活動:既然國家有權(quán)發(fā)行貨幣,是否可以隨意決定紙幣的發(fā)行數(shù)量呢?(2)紙幣的發(fā)行規(guī)律 紙幣的發(fā)行量必須以流通中所需要的貨幣量為限度。發(fā)行過多會引起物價上漲,;發(fā)行過少,阻礙流通。生活中出現(xiàn)的通貨膨脹、通貨緊縮現(xiàn)象,往往是與貨幣發(fā)行違反發(fā)行規(guī)律有重要關(guān)系。(3)制造假幣是違法行為教師活動:請同學(xué)們閱讀教材P6-7頁,說明刑法中的這些規(guī)定對你有什么啟示?學(xué)生活動:閱讀課本,探索問題。教師引導(dǎo):通過學(xué)習(xí)這些規(guī)定,應(yīng)該明確:制造假幣是一種違法行為,應(yīng)受到法律制裁;人民幣在我國經(jīng)濟(jì)和人民生活中有十分重要的作用,愛護(hù)人民幣是每個公民的責(zé)任;要提高鑒別假幣的能力。
【教學(xué)方法】本節(jié)課的教學(xué)知識點比較瑣碎,學(xué)生學(xué)習(xí)和理解起來有較大的困難。教師在并結(jié)合教材中所引的文獻(xiàn)資料給予必要的點撥,并依據(jù)教材,并在此基礎(chǔ)上拓展教材引用有關(guān)材料,擴(kuò)展學(xué)生的思維,用思考題的形式,有機(jī)地將教材的重點、難點知識串聯(lián)起來,注意培養(yǎng)學(xué)生史論結(jié)合、論從史出的良好的歷史學(xué)習(xí)品質(zhì)?!緦?dǎo)入新課】秦始皇統(tǒng)一中國后,繼承了商鞅變法的成果和實踐了韓非子的理論,創(chuàng)立了封建專制主義中央集權(quán)的政治制度,即皇帝制、中央官制和郡縣制,把專制主義的決策方式和中央集權(quán)的政治制度有機(jī)結(jié)合起來。秦始皇首創(chuàng)的專制主義中央集權(quán)的政治體制為我國延續(xù)兩千多年的封建社會選擇了政治體制的基本模式。西漢王朝建立后,劉邦承襲了秦始皇所開創(chuàng)的統(tǒng)一的封建專制主義中央集權(quán)制。通過綜合概述上節(jié)課內(nèi)容,導(dǎo)入新課。