課程課題隨機(jī)事件和概率授課教師李丹丹學(xué)時(shí)數(shù)2授課班級(jí) 授課時(shí)間 教學(xué)地點(diǎn) 背景分析正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點(diǎn)學(xué)生是容易理解的,問題在于怎樣合理地進(jìn)行分類和分步教學(xué)中給出的練習(xí)均在課本例題的基礎(chǔ)上稍加改動(dòng)過的,目的就在于幫助學(xué)生對(duì)這一知識(shí)的理解與應(yīng)用 學(xué)習(xí)目標(biāo) 設(shè) 定知識(shí)目標(biāo)能力(技能)目標(biāo)態(tài)度與情感目標(biāo)1、理解隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 1 會(huì)用隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2 會(huì)用基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運(yùn)算 了解學(xué)習(xí)本章的意義,激發(fā)學(xué)生的興趣. 學(xué)習(xí)任務(wù) 描 述 任務(wù)一,隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 任務(wù)二,理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件
解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項(xiàng)式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實(shí)際應(yīng)用題時(shí),應(yīng)分清何為除式,何為被除式,然后應(yīng)當(dāng)單項(xiàng)式除以單項(xiàng)式法則計(jì)算.三、板書設(shè)計(jì)1.單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.2.單項(xiàng)式除以單項(xiàng)式的應(yīng)用在教學(xué)過程中,通過生活中的情景導(dǎo)入,引導(dǎo)學(xué)生根據(jù)單項(xiàng)式乘以單項(xiàng)式的乘法運(yùn)算推導(dǎo)出其逆運(yùn)算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學(xué)概念的生成過程,從而加深印象
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計(jì)算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計(jì)算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計(jì)1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時(shí)是在上一課時(shí)的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時(shí)要給學(xué)生足夠主動(dòng)權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵(lì)學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時(shí)提高學(xué)生的邏輯思維能力.
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項(xiàng),也不含x項(xiàng),∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項(xiàng)式乘法法則計(jì)算出展開式,合并同類項(xiàng)后,再根據(jù)不含某一項(xiàng),可得這一項(xiàng)系數(shù)等于零,再列出方程解答.三、板書設(shè)計(jì)1.多項(xiàng)式與多項(xiàng)式的乘法法則:多項(xiàng)式和多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.2.多項(xiàng)式與多項(xiàng)式乘法的應(yīng)用本節(jié)知識(shí)的綜合性較強(qiáng),要求學(xué)生熟練掌握前面所學(xué)的單項(xiàng)式與單項(xiàng)式相乘及單項(xiàng)式與多項(xiàng)式相乘的知識(shí),同時(shí)為了讓學(xué)生理解并掌握多項(xiàng)式與多項(xiàng)式相乘的法則,教學(xué)中一定要精講精練,讓學(xué)生從練習(xí)中再次體會(huì)法則的內(nèi)容,為以后的學(xué)習(xí)奠定基礎(chǔ)
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項(xiàng)式乘單項(xiàng)式法則是解題的關(guān)鍵.三、板書設(shè)計(jì)1.單項(xiàng)式乘以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里面含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.2.單項(xiàng)式乘以單項(xiàng)式的應(yīng)用本課時(shí)的重點(diǎn)是讓學(xué)生理解單項(xiàng)式的乘法法則并能熟練應(yīng)用.要求學(xué)生在乘法的運(yùn)算律以及冪的運(yùn)算律的基礎(chǔ)上進(jìn)行探究.教師在課堂上應(yīng)該處于引導(dǎo)位置,鼓勵(lì)學(xué)生“試一試”,學(xué)生通過動(dòng)手操作,能夠更為直接的理解和應(yīng)用該知識(shí)點(diǎn)
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗(yàn)及題中所加木條可找到一般規(guī)律.解:過n邊形的一個(gè)頂點(diǎn)可以作(n-3)條對(duì)角線,把多邊形分成(n-2)個(gè)三角形,所以,要使一個(gè)n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時(shí),所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗(yàn)證求解.三、板書設(shè)計(jì)1.邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等,簡(jiǎn)寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動(dòng)入手,有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對(duì)新知識(shí)的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對(duì)“邊邊邊”掌握較好,達(dá)到了教學(xué)的預(yù)期目的.存在的問題是少數(shù)學(xué)生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學(xué)中進(jìn)一步加強(qiáng)鞏固和訓(xùn)練
解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡(jiǎn)便.三、板書設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
一、情境導(dǎo)入1.計(jì)算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項(xiàng)式乘以單項(xiàng)式的運(yùn)算歸納出多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?二、合作探究探究點(diǎn):多項(xiàng)式除以單項(xiàng)式【類型一】 直接利用多項(xiàng)式除以單項(xiàng)式進(jìn)行計(jì)算計(jì)算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項(xiàng)式除以單項(xiàng)式,先用多項(xiàng)式的每一項(xiàng)分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項(xiàng)式除以單項(xiàng)式,先把多項(xiàng)式的每一項(xiàng)都分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設(shè)計(jì)1.邊角邊:兩邊及其夾角分別相等的兩個(gè)三角形全等,簡(jiǎn)寫成“邊角邊”或“SAS”.兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運(yùn)用本節(jié)課從操作探究入手,具有較強(qiáng)的操作性和直觀性,有利于學(xué)生從直觀上積累感性認(rèn)識(shí),從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對(duì)新知識(shí)的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對(duì)“邊角邊”掌握較好,但在探究三角形的大小、形狀時(shí)不會(huì)正確分類,需要在今后的教學(xué)和作業(yè)中進(jìn)一步加強(qiáng)分類思想的鞏固和訓(xùn)練
1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點(diǎn))2.能運(yùn)用“角邊角”“角角邊”判定方法解決有關(guān)問題.(難點(diǎn)) 一、情境導(dǎo)入如圖所示,某同學(xué)把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學(xué)生活動(dòng):學(xué)生先自主探究出答案,然后再與同學(xué)進(jìn)行交流.教師點(diǎn)撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點(diǎn)一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據(jù)平行線的性質(zhì)可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質(zhì)可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開口向下,對(duì)稱軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷售該商品第45天時(shí),當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計(jì)算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
①平動(dòng)的物體一般可以看作質(zhì)點(diǎn)做平動(dòng)的物體,由于物體上各點(diǎn)的運(yùn)動(dòng)情況相同,可以用一個(gè)點(diǎn)代表整個(gè)物體的運(yùn)動(dòng),在這種情況下,物體的大小、形狀就無關(guān)緊要了,可以把整個(gè)物體當(dāng)質(zhì)點(diǎn)。例如:平直公路上行駛的汽車,車身上各部分的運(yùn)動(dòng)情況相同,當(dāng)我們把汽車作為一個(gè)整體來研究它的運(yùn)動(dòng)的時(shí)候,就可以把汽車當(dāng)作質(zhì)點(diǎn)。當(dāng)然,假如我們需要研究汽車輪胎的運(yùn)動(dòng),由于輪胎上各部分運(yùn)動(dòng)情況不相同,那就不能把它看作質(zhì)點(diǎn)了。要注意的是:同一物體在不同情況下有時(shí)可看質(zhì)點(diǎn),有時(shí)不可以看作質(zhì)點(diǎn),一列火車從北京開到上海,研究火車的運(yùn)行的時(shí)間,可將火車看成質(zhì)點(diǎn),而火車過橋時(shí),計(jì)算火車過橋的時(shí)間,不可以將火車看成質(zhì)點(diǎn)。②有轉(zhuǎn)動(dòng)但轉(zhuǎn)動(dòng)為次要因素例如:研究地球公轉(zhuǎn)時(shí),可把地球看作質(zhì)點(diǎn);研究地球自轉(zhuǎn)時(shí),不能把地球看作質(zhì)點(diǎn)。③物體的形狀、大小可忽略再如:乒乓球旋轉(zhuǎn)對(duì)球的運(yùn)動(dòng)的較大的影響,運(yùn)動(dòng)員在發(fā)球、擊球時(shí)都要考慮,就不能把乒乓球簡(jiǎn)單看作質(zhì)點(diǎn)。
(創(chuàng)設(shè)實(shí)例:多媒體播放視頻劉翔的110m欄。)1.提出問題:怎樣定量(準(zhǔn)確)人描述車或劉翔所在的位置?2.提示:你的描述必須能反映物體(或人)的運(yùn)動(dòng)特點(diǎn)(直線)、運(yùn)動(dòng)方向、各點(diǎn)之間的距離等因素。3.總結(jié):①為了定量地描述物體的位置及位置的變化,需要在參考系上建立適當(dāng)?shù)淖鴺?biāo)系。坐標(biāo)系是在參考系的基礎(chǔ)上抽象出來的概念,是抽象化的參考系。為了定量地描述物體的位置及位置的變化需要在參考系上建立適當(dāng)?shù)淖鴺?biāo)系,如果物體在一維空間運(yùn)動(dòng),即沿一條直線運(yùn)動(dòng),只需建立直線坐標(biāo)系,就能準(zhǔn)確表達(dá)物體的位置;如果物體在二維空間運(yùn)動(dòng),即在同一平面運(yùn)動(dòng),就需要建立平面直角坐標(biāo)系來描述物體的位置;當(dāng)物體在三維空間運(yùn)動(dòng)時(shí),則需要建立三維坐標(biāo)系。①一維坐標(biāo):描述物體在一條直線上運(yùn)動(dòng),即物體做一維運(yùn)動(dòng)時(shí),可以以這條直線為x軸,在直線上規(guī)定原點(diǎn)、正方向和單位長度,建立直線坐標(biāo)系。如圖1-1-1所示,若某一物體運(yùn)動(dòng)到A點(diǎn),此時(shí)它的位置坐標(biāo)XA=3m,若它運(yùn)動(dòng)到B點(diǎn),則此時(shí)它的坐標(biāo)XB=-2m(“-”表示沿X軸負(fù)方向)。
一、說教材小數(shù)乘以小數(shù)的原有基礎(chǔ)是整數(shù)乘整數(shù)、小數(shù)乘整數(shù)。它為小數(shù)除法、小數(shù)四則混合運(yùn)算和分?jǐn)?shù)小數(shù)四則混合運(yùn)算學(xué)習(xí)奠定基礎(chǔ),占據(jù)著重要的地位。小數(shù)乘小數(shù)是五年級(jí)上冊(cè)第一單元小數(shù)乘法的難點(diǎn)和關(guān)鍵,一共涉及三個(gè)知識(shí)點(diǎn),1.確定積小數(shù)點(diǎn)位置;2.積位數(shù)不夠時(shí)添“0”補(bǔ)足;3.小數(shù)連乘的探究。第一課時(shí)是根據(jù)整數(shù)乘法算出積后來確定積的小數(shù)點(diǎn)位置,不涉及積位數(shù)不夠時(shí)用0來補(bǔ)足的知識(shí)。本課時(shí)的關(guān)鍵在于理解算理,歸納算法。根據(jù)以上的分析及新課程標(biāo)準(zhǔn)的要求,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu),對(duì)整數(shù)乘法算理的掌握,能對(duì)小數(shù)乘整數(shù)積小數(shù)點(diǎn)的定位,制定以下的教學(xué)目標(biāo):知識(shí)與能力:共同探討,理解并掌握小數(shù)乘小數(shù)的算理及算法;過程與方法:在探索過程中,培養(yǎng)學(xué)生觀察、比較、歸納與概括的能力和用數(shù)學(xué)語言進(jìn)行表述交流的能力,滲透轉(zhuǎn)化思想;
二、說教學(xué)目標(biāo)知識(shí)與技能:初步理解“方程的解”和“解方程”的含義,以及之間的聯(lián)系和區(qū)別。能用等式的性質(zhì)解形如X±a=b的方程,掌握解方程的格式和寫法。初步學(xué)會(huì)檢驗(yàn)?zāi)硞€(gè)數(shù)是否是方程的解,培養(yǎng)學(xué)生檢驗(yàn)的習(xí)慣,提高計(jì)算能力。過程和方法:通過探索、討論、交流等活動(dòng),讓學(xué)生初步理解“方程的解”和“解方程”的概念。經(jīng)歷運(yùn)用等式的性質(zhì)探究方程解法的過程,體會(huì)方程的解法和等式的性質(zhì)之間的聯(lián)系。情感、態(tài)度與價(jià)值觀:1. 學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對(duì)數(shù)學(xué)有好奇心和求知欲。2. 在觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)中,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)。重點(diǎn):方程的解和解方程的概念,初步掌握用等式性質(zhì)來解簡(jiǎn)易方程的方法。難點(diǎn):區(qū)別方程的解和解方程的含義。解方程的算理。三、說教法與學(xué)法教法:新課標(biāo)指出,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者,充分發(fā)揮學(xué)生的主體性。根據(jù)這一理念,我在教學(xué)中通過觀察、猜想、驗(yàn)證等方式,自主探索、自主學(xué)習(xí)。有目的地運(yùn)用知識(shí)遷移的規(guī)律,引導(dǎo)學(xué)生進(jìn)行觀察、比較、分析、概括,培養(yǎng)學(xué)生的邏輯思維能力。學(xué)法:①讓學(xué)生學(xué)會(huì)以舊引新,掌握并運(yùn)用知識(shí)遷移進(jìn)行學(xué)習(xí)的方法;②讓學(xué)生學(xué)會(huì)自主發(fā)現(xiàn)問題,分析問題,解決問題的方法。
一、 說教材1、教材內(nèi)容:人教版小學(xué)數(shù)學(xué)第十冊(cè)《解簡(jiǎn)易方程》及練習(xí)二十六1~5題。2、教材簡(jiǎn)析:本節(jié)課是在學(xué)生已經(jīng)學(xué)過用字母表示數(shù)和數(shù)量關(guān)系,掌握了求未知數(shù)x的方法的基礎(chǔ)上學(xué)習(xí)的。通過學(xué)習(xí)使學(xué)生理解方程的意義、方程的解和解方程等概念,掌握方程與等式之間的關(guān)系,掌握解方程的一般步驟,為今后學(xué)習(xí)列方程解應(yīng)用題解決實(shí)際問題打下基礎(chǔ)。3、教學(xué)目標(biāo):(1)使學(xué)生理解方程的意義、方程的解和解方程的概念,掌握方程與等式之間的關(guān)系。(2)掌握解方程的一般步驟,會(huì)解簡(jiǎn)單的方程,培養(yǎng)學(xué)生檢驗(yàn)的習(xí)慣,提高計(jì)算能力。(3)結(jié)合教學(xué),培養(yǎng)學(xué)生事實(shí)求是的學(xué)習(xí)態(tài)度,求真務(wù)實(shí)的科學(xué)精神,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。滲透一一對(duì)應(yīng)的數(shù)學(xué)思想。
一、說教材1、教學(xué)內(nèi)容:本課內(nèi)容選自2013人教版小學(xué)數(shù)學(xué)二年級(jí)上冊(cè)第一單元《長度單位》例1、例2、例3的教學(xué)內(nèi)容。 2、教材所處的地位和作用本課是在學(xué)生已經(jīng)對(duì)長短的概念有了初步的認(rèn)識(shí),并學(xué)會(huì)直觀比較一些物體長短的基礎(chǔ)上來學(xué)習(xí)一些計(jì)量長度的知識(shí),這些知識(shí)可以幫助學(xué)生認(rèn)識(shí)長度單位,初步建立1厘米的長度觀念。 3、學(xué)情分析二年級(jí)學(xué)生經(jīng)過一年的學(xué)習(xí),已經(jīng)認(rèn)識(shí)了100以內(nèi)的數(shù),學(xué)會(huì)了一些簡(jiǎn)單的統(tǒng)計(jì)方法。這些知識(shí)儲(chǔ)備為我們進(jìn)一步學(xué)習(xí)新知識(shí)打下基礎(chǔ)。二、說教學(xué)目標(biāo)1、知識(shí)與技能目標(biāo):統(tǒng)一長度單位,建立1厘米的觀念,會(huì)用厘米測(cè)量。2、情感目標(biāo):在小組合作測(cè)量的過程中,培養(yǎng)學(xué)生樂于探究的學(xué)習(xí)態(tài)度,學(xué)會(huì)與他人合作。體驗(yàn)知識(shí)的形成過程,進(jìn)一步體驗(yàn)學(xué)習(xí)成功帶來的喜悅。
1、教材的地位《觀察物體》這節(jié)課是人教版《義務(wù)教育教科書?數(shù)學(xué)(二年級(jí)上冊(cè))》第五單元的第一課時(shí)。教材是從學(xué)生已有生活經(jīng)驗(yàn)出發(fā)以及已學(xué)習(xí)了位置知識(shí)的基礎(chǔ)上,借助于生活中的實(shí)物和學(xué)生的操作活動(dòng)進(jìn)行教學(xué)的。主要幫助學(xué)生建立初步的空間觀念,發(fā)展他們的形象思維,通過一些活動(dòng),使學(xué)生認(rèn)識(shí)到,從不同的角度觀察同一個(gè)物體,看到的物體的形狀可能是不同的,并讓學(xué)生初步體會(huì)局部與整體的關(guān)系,通過這部分內(nèi)容的教學(xué),不但可以使學(xué)生學(xué)會(huì)從不同的角度觀察物體,而且又為以后學(xué)習(xí)有關(guān)幾何圖形的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。 2、教學(xué)目標(biāo)依照《新課程標(biāo)準(zhǔn)》的要求,結(jié)合教材和學(xué)生的特點(diǎn),從知識(shí)與技能、過程與方法和情感態(tài)度價(jià)值觀三方面制定以下教學(xué)目標(biāo):(1)能辨認(rèn)并能想象從不同位置看到的簡(jiǎn)單物體的形狀。 (2)在探究中,學(xué)生掌握全面、正確的觀察物體的基本方法,并感受到局部與整體的關(guān)系。 (3)通過活動(dòng),感受數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生觀察物體的興趣和熱情。3、教學(xué)重點(diǎn)、難點(diǎn)由于小學(xué)二年級(jí)的學(xué)生方位感不強(qiáng),他們往往前后不分,左右搞錯(cuò),觀察周圍的事物也是比較單純、直觀地看表面。