解析:先求出長(zhǎng)方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長(zhǎng)方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長(zhǎng)方形的面積公式和單項(xiàng)式乘單項(xiàng)式法則是解題的關(guān)鍵.三、板書設(shè)計(jì)1.單項(xiàng)式乘以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里面含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.2.單項(xiàng)式乘以單項(xiàng)式的應(yīng)用本課時(shí)的重點(diǎn)是讓學(xué)生理解單項(xiàng)式的乘法法則并能熟練應(yīng)用.要求學(xué)生在乘法的運(yùn)算律以及冪的運(yùn)算律的基礎(chǔ)上進(jìn)行探究.教師在課堂上應(yīng)該處于引導(dǎo)位置,鼓勵(lì)學(xué)生“試一試”,學(xué)生通過(guò)動(dòng)手操作,能夠更為直接的理解和應(yīng)用該知識(shí)點(diǎn)
方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會(huì)遇到一些添加輔助線的問(wèn)題,其頂角平分線、底邊上的高、底邊上的中線是常見(jiàn)的輔助線.三、板書設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對(duì)稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對(duì)稱軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
一、情境導(dǎo)入1.計(jì)算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項(xiàng)式乘以單項(xiàng)式的運(yùn)算歸納出多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?二、合作探究探究點(diǎn):多項(xiàng)式除以單項(xiàng)式【類型一】 直接利用多項(xiàng)式除以單項(xiàng)式進(jìn)行計(jì)算計(jì)算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項(xiàng)式除以單項(xiàng)式,先用多項(xiàng)式的每一項(xiàng)分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項(xiàng)式除以單項(xiàng)式,先把多項(xiàng)式的每一項(xiàng)都分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.
方法總結(jié):觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢(shì)寫出自變量與因變量之間的關(guān)系式.三、板書設(shè)計(jì)1.用關(guān)系式表示變量間關(guān)系2.表格和關(guān)系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對(duì)應(yīng)值,但不能直接反映變量的整體變化情況;用關(guān)系式表示變量之間的關(guān)系簡(jiǎn)單明了,便于計(jì)算分析,能方便求出自變量為任意一個(gè)值時(shí),相對(duì)應(yīng)的因變量的值,但是需計(jì)算.本節(jié)課的教學(xué)內(nèi)容是變量間關(guān)系的另一種表示方法,這種表示方法學(xué)生才接觸到,學(xué)生感覺(jué)有點(diǎn)難.這節(jié)課的重點(diǎn)是讓學(xué)生掌握用關(guān)系式與表格表示變量間的關(guān)系,難點(diǎn)是理解這兩種表示方法的優(yōu)缺點(diǎn).就此問(wèn)題,通過(guò)讓學(xué)生對(duì)幾個(gè)例子比較、討論、總結(jié)、歸納兩種方法的優(yōu)點(diǎn)來(lái)解決,這樣學(xué)生就能很好地區(qū)分這兩種表示方法,并能對(duì)不同的問(wèn)題選擇恰當(dāng)?shù)姆椒?/p>
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗(yàn)及題中所加木條可找到一般規(guī)律.解:過(guò)n邊形的一個(gè)頂點(diǎn)可以作(n-3)條對(duì)角線,把多邊形分成(n-2)個(gè)三角形,所以,要使一個(gè)n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時(shí),所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗(yàn)證求解.三、板書設(shè)計(jì)1.邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等,簡(jiǎn)寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動(dòng)入手,有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對(duì)新知識(shí)的理解和掌握.從課堂教學(xué)的情況來(lái)看,學(xué)生對(duì)“邊邊邊”掌握較好,達(dá)到了教學(xué)的預(yù)期目的.存在的問(wèn)題是少數(shù)學(xué)生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學(xué)中進(jìn)一步加強(qiáng)鞏固和訓(xùn)練
方法總結(jié):絕對(duì)值的化簡(jiǎn)首先要判斷絕對(duì)值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡(jiǎn).此類問(wèn)題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡(jiǎn).三、板書設(shè)計(jì)1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問(wèn)題的過(guò)程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問(wèn)題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過(guò)觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既增加了學(xué)習(xí)興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力
解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識(shí).線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個(gè)公共汽車站,A,B是路邊兩個(gè)新建小區(qū),這個(gè)公共汽車站C建在什么位置,能使兩個(gè)小區(qū)到車站的路程一樣長(zhǎng)(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?
【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點(diǎn)C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點(diǎn)A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長(zhǎng),根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當(dāng)于確定三角形三個(gè)頂點(diǎn)的位置.因此可先確定三角形的一條邊(即兩個(gè)頂點(diǎn)),再分別以這條邊的兩個(gè)端點(diǎn)為圓心,以已知線段長(zhǎng)為半徑畫弧,兩弧的交點(diǎn)即為另一個(gè)頂點(diǎn).三、板書設(shè)計(jì)1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個(gè)角等于已知角.作圖時(shí),鼓勵(lì)學(xué)生一邊作圖,一邊用幾何語(yǔ)言敘述作法,培養(yǎng)學(xué)生的動(dòng)手能力、語(yǔ)言表達(dá)能力
1.進(jìn)一步理解概率的意義并掌握計(jì)算事件發(fā)生概率的方法;(重點(diǎn))2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點(diǎn))一、情境導(dǎo)入一個(gè)箱子中放有紅、黃、黑三個(gè)小球,三個(gè)人先后去摸球,一人摸一次,一次摸出一個(gè)小球,摸出后放回,摸出黑色小球?yàn)橼A,那么這個(gè)游戲是否公平?二、合作探究探究點(diǎn)一:與摸球有關(guān)的等可能事件的概率【類型一】 摸球問(wèn)題一個(gè)不透明的盒子中放有4個(gè)白色乒乓球和2個(gè)黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機(jī)摸出1個(gè)乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據(jù)題意可得不透明的袋子里裝有6個(gè)乒乓球,其中2個(gè)黃色的,任意摸出1個(gè),則P(摸到黃色乒乓球)=26=13.故選C.方法總結(jié):概率的求法關(guān)鍵是找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.【類型二】 與代數(shù)知識(shí)相關(guān)的問(wèn)題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機(jī)取的一個(gè)數(shù),則m4>100的概率為()A.15 B.310 C.12 D.35
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過(guò)本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計(jì)1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問(wèn)題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練
補(bǔ)充題:為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥熏消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問(wèn)題:(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)學(xué)生方可進(jìn)教室,那么從消毒開(kāi)始,至少需要經(jīng)過(guò)______分鐘后,學(xué)生才能回到教室;(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時(shí)間為12分鐘,大于10分鐘的有效消毒時(shí)間.
解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過(guò)學(xué)生自己動(dòng)手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動(dòng)的空間.
如圖,四邊形OABC是邊長(zhǎng)為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過(guò)點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長(zhǎng)為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號(hào).三、板書設(shè)計(jì)反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時(shí),在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時(shí),在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過(guò)對(duì)反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語(yǔ)言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.
因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過(guò)點(diǎn)A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當(dāng)S=0.2時(shí),p=6000.2=3000,即壓強(qiáng)是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強(qiáng)、壓力與受力面積之間的關(guān)系p= ,當(dāng)壓力F一定時(shí),p與S成反比例.另外,利用反比例函數(shù)的知識(shí)解決實(shí)際問(wèn)題時(shí),要善于發(fā)現(xiàn)實(shí)際問(wèn)題中變量之間的關(guān)系,從而進(jìn)一步建立反比例函數(shù)模型.三、板書設(shè)計(jì)反比例函數(shù)的應(yīng)用實(shí)際問(wèn)題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識(shí)的綜合經(jīng)歷分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問(wèn)題的過(guò)程,提高運(yùn)用代數(shù)方法解決問(wèn)題的能力,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).通過(guò)反比例函數(shù)在其他學(xué)科中的運(yùn)用,體驗(yàn)學(xué)科整合思想.
觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?學(xué)生小組討論,弄清上述兩個(gè)圖象的異同點(diǎn)。交流討論反比 例函數(shù)圖象是中心對(duì)稱圖形嗎?如果是,請(qǐng)找出對(duì)稱中心.反比例函數(shù)圖象是軸對(duì)稱圖形嗎?如果是,請(qǐng)指出它的對(duì)稱軸.二、隨堂練習(xí)課本隨堂練習(xí) [探索與交流]對(duì)于函數(shù) , 兩支曲線分別位于哪個(gè)象限內(nèi)?對(duì)于函數(shù) ,兩支曲線又分別位于哪個(gè)象限內(nèi)?怎樣區(qū)別這兩個(gè)函數(shù)的圖象。學(xué)生分四人小組全班探索。 三、課堂總結(jié)在進(jìn)行函數(shù)的列表,描點(diǎn)作圖的活動(dòng)中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過(guò)程中,大家要進(jìn)行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當(dāng)k>0時(shí),它的圖像位于一、三象限內(nèi),當(dāng)k<0時(shí),它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對(duì)稱圖形,又是軸對(duì)稱圖形。
五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測(cè):檢測(cè):晚上,小華在馬路的一側(cè)散步,對(duì)面有一路燈,當(dāng)小華筆直地往前走時(shí),他在這盞路燈下的影子也隨之向前移動(dòng).小華頭頂?shù)挠白铀?jīng)過(guò)的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁(yè)習(xí)題5.1八、板書設(shè)計(jì)投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個(gè)話題,接著經(jīng)歷實(shí)踐、探索的過(guò)程,掌握了中心投影的含義,進(jìn)一步根據(jù)燈光光線的特點(diǎn),由實(shí)物與影子來(lái)確定路燈的位置,能畫出在同一時(shí)刻另一物體的影子,還要求大家不僅要自己動(dòng)手實(shí)踐,還要和同伴互相交流.同時(shí)要用自己的語(yǔ)言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實(shí)踐操作能力,合作交流能力,語(yǔ)言表達(dá)能力.
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點(diǎn)Q時(shí)在路燈AD下影子的長(zhǎng)度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對(duì)應(yīng)線段的長(zhǎng)度.三、板書設(shè)計(jì)投影的概念與中心投影投影的概念:物體在光線的照射下,會(huì) 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點(diǎn)光源的光線形成的 投影變化規(guī)律影子是生活中常見(jiàn)的現(xiàn)象,在探索物體與其投影關(guān)系的活動(dòng)中,體會(huì)立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學(xué)生的空間觀念.通過(guò)在燈光下擺弄小棒、紙片,體會(huì)、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學(xué)生觀察問(wèn)題、分析問(wèn)題的能力.
故線段d的長(zhǎng)度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長(zhǎng)度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長(zhǎng).已知三條線段長(zhǎng)分別為1cm,2cm,2cm,請(qǐng)你再給出一條線段,使得它的長(zhǎng)與前面三條線段的長(zhǎng)能夠組成一個(gè)比例式.解析:因?yàn)楸绢}中沒(méi)有明確告知是求1,2,2的第四比例項(xiàng),因此所添加的線段長(zhǎng)可能是前三個(gè)數(shù)的第四比例項(xiàng),也可能不是前三個(gè)數(shù)的第四比例項(xiàng),因此應(yīng)進(jìn)行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長(zhǎng)有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個(gè)數(shù)成比例,則應(yīng)滿足其中兩個(gè)數(shù)的比等于另外兩個(gè)數(shù)的比,也可轉(zhuǎn)化為其中兩個(gè)數(shù)的乘積恰好等于另外兩個(gè)數(shù)的乘積.
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過(guò)程,培養(yǎng)學(xué)生的探索能力.通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.