活動(dòng)1【導(dǎo)入】談話引入設(shè)計(jì)意圖:這一環(huán)節(jié),是一首小詩(shī)來激發(fā)學(xué)生的離別情感,勾起學(xué)生對(duì)小學(xué)六年生活的美好回憶,從而導(dǎo)入新課。同學(xué)們,今天老師給大家?guī)淼牟皇敲利惖膱D畫,而是一首我寫的詩(shī),你們誰愿意來第一個(gè)來欣賞一下。出示課件1:學(xué)生配樂朗讀:每到六年級(jí)心里就有些難過你們就要離開而我剛剛收獲我不知道你們將來會(huì)怎樣生活你們總說你們永遠(yuǎn)永遠(yuǎn)記得我
一、導(dǎo)入:1、請(qǐng)一位同學(xué)和老師一起做游戲:老師有紅、黃、藍(lán)三種顏色,兩人各滴一種顏色在畫紙上,再用吸管吹,讓顏料混合、互相滲透。讓全班同學(xué)觀察兩種顏色互相滲透的變化過程,并且把看到的變化分別在小組里說一說。2、請(qǐng)兩位同學(xué)上臺(tái),再做一次游戲,把看到的變化經(jīng)小組討論后,在班上說一說。3、教師小結(jié):兩種流動(dòng)的顏色在互相混合、滲透的過程中變幻無窮,今天,我們一起動(dòng)手試試,看看這種美妙的變化。4、揭示課題:流動(dòng)的顏色
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長(zhǎng)方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.
解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
2學(xué)情分析在這節(jié)課中,我恰當(dāng)?shù)剡\(yùn)用多種教學(xué)手段,利用學(xué)生及教師自身的優(yōu)勢(shì),在課堂上師生共同參與教學(xué)活動(dòng),充分發(fā)揮了學(xué)生的主體作用,使每個(gè)學(xué)生都成為學(xué)習(xí)活動(dòng)的主人,從中獲得許多新鮮的感受。本設(shè)計(jì)從課題入手,設(shè)謎導(dǎo)入,通過畫一畫,引導(dǎo)學(xué)生抓住生肖動(dòng)物的外形特征,要學(xué)生利用身邊各種材料,設(shè)計(jì)制作出自己喜愛的或自己的生肖工藝品,讓學(xué)生感受中國(guó)傳統(tǒng)文化的源遠(yuǎn)流長(zhǎng)。
教學(xué)目標(biāo) 知識(shí)目標(biāo):通過欣賞大自然的圖片,感知大自然不同特點(diǎn)的美?! 〖寄苣繕?biāo):能用自己喜歡的方式表達(dá)對(duì)不同自然美的感受?! ∏楦袘B(tài)度與價(jià)值觀:培養(yǎng)學(xué)生熱愛大自然的情感,及愛護(hù)大自然的情感。 教學(xué)重點(diǎn)讓學(xué)生感受大自然不同的美,了解大自然的豐富,并能用簡(jiǎn)單的語(yǔ)言表達(dá)自己的感受?! 〗虒W(xué)難點(diǎn)學(xué)習(xí)用審美的眼光去觀察大自然?! ≈饕谭▎l(fā)引導(dǎo)法、自學(xué)嘗試法 學(xué)習(xí)指導(dǎo)體驗(yàn)探究法輔助指導(dǎo)法 教學(xué)資源教師:教材、課件。 學(xué)生:教材、自然風(fēng)光片 教學(xué)過程: 教學(xué)活動(dòng)教學(xué)意圖 教師學(xué)生
2學(xué)情分析 本課是廣西版小學(xué)三年級(jí)上冊(cè)美術(shù)第十七課的內(nèi)容,是一節(jié)繪畫課,屬于課程目標(biāo)中造型.表現(xiàn)的學(xué)習(xí)領(lǐng)域。在這一節(jié)課里,要求學(xué)生學(xué)會(huì)制作立體或半立體的昆蟲。生活在大自然里的昆蟲,形體可愛、色彩艷麗、種類繁多。本科融自然學(xué)科知識(shí)和美術(shù)學(xué)科知識(shí)為一體,通過引導(dǎo)學(xué)生欣賞昆蟲的形體、色彩、生理結(jié)構(gòu),教會(huì)學(xué)生甄別昆蟲。利用學(xué)生喜愛昆蟲的特點(diǎn),引導(dǎo)學(xué)生運(yùn)用圓形、半圓形、橢圓形等幾何圖形等幾何形體,并采用對(duì)折、剪貼的方法制作小昆蟲。激發(fā)學(xué)生豐富的想象力和創(chuàng)造愿望。
2學(xué)情分析 通過本課的學(xué)習(xí),調(diào)動(dòng)和激發(fā)學(xué)生參與學(xué)習(xí)活動(dòng)的熱情,使學(xué)生在游戲活動(dòng)中通過教師的引導(dǎo)及自己動(dòng)手實(shí)踐的親身體驗(yàn),感知泥性并自我解決如何使泥巴聽話,如何玩出新的方法這一問題。同時(shí),在教師的鼓勵(lì)下,使學(xué)生能大膽自由的進(jìn)行造型活動(dòng)并大膽發(fā)表自我感受。3重點(diǎn)難點(diǎn) 1.探索感知泥性,歸納玩泥的幾種方法。2.感受、探索、泥性及口頭表達(dá)。
2學(xué)情分析 1、這一課是一年級(jí)的“造型·表現(xiàn)”學(xué)習(xí)領(lǐng)域,一年級(jí)孩子自制力較差,注意力集中時(shí)間不長(zhǎng),缺乏一定的造型能力,但好奇心很強(qiáng),表現(xiàn)欲望非常強(qiáng)烈,非常希望得到老師和同學(xué)們的認(rèn)可,從他們的興趣入手就能達(dá)到事半功倍的效果;2、教學(xué)方式應(yīng)該是直觀的;3、讓學(xué)生通過欣賞與想象進(jìn)行創(chuàng)作,激發(fā)他們對(duì)大自然的興趣,感受大自然的美。
教學(xué)過程:一、組織教學(xué),導(dǎo)入學(xué)習(xí)1.觀察導(dǎo)入,激發(fā)興趣(教具出示)2.教師和學(xué)生一起做猜節(jié)日的游戲,激發(fā)學(xué)生的興趣。 每年的9月10日都是教師們最開心的日子,也是學(xué)生們表達(dá)對(duì)老師尊敬的日子,中國(guó)自古以來便有尊師重教的傳統(tǒng),《教師法》 第四條規(guī)定全社會(huì)應(yīng)當(dāng)尊重教師。
2學(xué)情分析三年級(jí)(2)班大部分學(xué)生喜愛美術(shù)課,喜歡做一些折紙、小制作。在準(zhǔn)備材料方面,多數(shù)學(xué)生能準(zhǔn)備較充分。本節(jié)課我想利用剪、粘、畫等制作方法,圍繞如何運(yùn)用廢舊的材料制作小掛飾,從中培養(yǎng)學(xué)生的設(shè)計(jì)意識(shí)和操作能力。教學(xué)主要使學(xué)生通過觀察、創(chuàng)作來表達(dá)自己的生活感受,提高學(xué)生的美術(shù)素養(yǎng)。3重點(diǎn)難點(diǎn)尋找與眾不同的材料來制作掛飾,熟練并安全地使用工具進(jìn)行制作,向同學(xué)們展示自己的作品并說明掛飾的用途。
2學(xué)情分析本課內(nèi)容選用了苗族阿姐的背簍,黎族阿爸的魚籠,竹搖籃、簸箕等借助家庭中常見的竹器作為學(xué)習(xí)內(nèi)容,目的是要求學(xué)生用線描的方法對(duì)竹器的外形及竹編的篾紋進(jìn)行描繪,鍛煉學(xué)生對(duì)事物的觀察能力和表現(xiàn)能力。在此之前學(xué)生已經(jīng)學(xué)過了如何用線描的方式描繪生活中的小物件,這為過渡到本課內(nèi)容的學(xué)習(xí)起到了鋪墊作用,同時(shí)為后面的素描教學(xué)內(nèi)容打下造型基礎(chǔ)。