答:所有陰影部分的面積和是5050cm2.方法總結:首先應找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.三、板書設計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點:能夠運用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運用平方差公式因式分解,首先應注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通??紤]應用平方差公式;如果多項式中有公因式可提,應先提取公因式,而且還要“提”得徹底,最后應注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
解:設另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結:因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設計1.因式分解的概念把一個多項式轉化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.
探究點三:作中心對稱圖形如圖,網格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉90°能與自身重合.三、板書設計1.中心對稱如果把一個圖形繞著某一點旋轉180°,它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調學生自主探索和合作交流,結合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
解析:整個陰影部分比較復雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結:本題是利用旋轉的特征:旋轉前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設計1.簡單的旋轉作圖2.旋轉圖形的應用教學過程中,強調學生自主探索和合作交流,經歷觀察、歸納和動手操作,利用旋轉的性質作圖.
(3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內兩點之間的距離公式,設平面內任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:橫軸表示時間,縱軸表示溫度.溫度最高應找到圖象的最高點所對應的x值,即15時,A對;溫度最低應找到圖象的最低點所對應的x值,即3時,B對;這天最高溫度與最低溫度的差應讓前面的兩個y值相減,即38-22=16(℃),C錯;從圖象看出,這天0~3時,15~24時溫度在下降,D對.故選C.方法總結:認真觀察圖象,弄清楚時間是自變量,溫度是因變量,然后由圖象上的點確定自變量及因變量的對應值.三、板書設計1.用曲線型圖象表示變量間關系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質,這也是數(shù)形結合的優(yōu)點,但是它也存在感性觀察不夠準確,畫面局限性大的缺點.教學中讓學生自己歸納總結,回顧反思,將知識點串連起來,完成對該部分內容的完整認識和意義建構.這對學生在實際情境中根據(jù)不同需要選擇恰當?shù)姆椒ū硎咀兞块g的關系,發(fā)展與深化思維能力是大有裨益的
解析:(1)根據(jù)圖象的縱坐標,可得比賽的路程.根據(jù)圖象的橫坐標,可得比賽的結果;(2)根據(jù)乙加速后行駛的路程除以加速后的時間,可得答案.解:(1)由縱坐標看出,這次龍舟賽的全程是1000米;由橫坐標看出,乙隊先到達終點;(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時間是3.8-2.2=1.6(分鐘),乙與甲相遇時乙的速度600÷1.6=375(米/分鐘).方法總結:解決雙圖象問題時,正確識別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實際意義.三、板書設計1.用折線型圖象表示變量間關系2.根據(jù)折線型圖象獲取信息解決問題經歷一般規(guī)律的探索過程,培養(yǎng)學生的抽象思維能力,經歷從實際問題中得到關系式這一過程,提升學生的數(shù)學應用能力,使學生在探索過程中體驗成功的喜悅,樹立學習的自信心.體驗生活中數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣
例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下.究竟是哪個隊贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計劃帶領若干名學生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學生都按七折收費;乙旅行社的優(yōu)惠條件是家長、學生都按八折收費.假設這兩位家長帶領x名學生去旅游,他們應該選擇哪家旅行社?
一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關系,進而才能利用直角三角形的邊與角的相互關系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關鍵,而且也是本章知識的難點。如何解決這一關鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
(一)復習導入 1. 師:同學們,上節(jié)課我們學習了折扣,你會做下面的題嗎?(課件第2張)(1)五五折表示十分之(五點五),也就是(55)%。 (2)一件商品打九八折出售,就是按原價的(98%)出售。(3)一件上衣原價75元,現(xiàn)在打八折售出,現(xiàn)在買這件上衣需要(60)元。(4)現(xiàn)價=(原價)×(折扣)2.師:生活中的百分數(shù)還有很多,比如說“成數(shù)”。例如:今年我省油菜籽比去年增產二成。這節(jié)課我們就來學習“成數(shù)”。(板書課題:成數(shù))(課件第3張)【設計意圖】 “折扣”與“成數(shù)”雖然運用不一樣,但解決方法大致相同,復習不僅可以起到鞏固作用,也能讓學生對新知的解決有一些鋪墊。(二)探究新知 1、探究成數(shù)的含義以及成數(shù)和百分數(shù)的關系。(課件第4張)(1)農業(yè)收成,經常用成數(shù)來表示。你知道什么是成數(shù)嗎? 生1:成數(shù)表示一個數(shù)是另一個數(shù)的十分之幾,通稱“幾成”。“一成”就是十分之一,改寫成百分數(shù)是10%。(2)填一填。(課件第5張)“二成”就是(十分之二),改寫成百分數(shù)是(20%);“三成五”就是(十分之三點五),改寫成百分數(shù)是(35%)。“四成三”就是(十分之四點三),改寫成百分數(shù)是(43%);“六成五”就是(十分之六點五),改寫成百分數(shù)是(65%)。(3)把下面的成數(shù)改寫成百分數(shù)。 (課件第6張)三成=(30)% 四成六=(46)% 九成九=(99)% 二成五=(25)% 一成二=(12)% 七成三=(73)%
(一)觀圖激趣、設疑導入 出示課件的第一張幻燈片。1、談話導入(PPT課件出示腦筋急轉彎)。師:同學們,老師這里有一個腦筋急轉彎,一起來猜一猜把!生1:因為螞蟻是在地圖上爬過去的。2、揭示課題。師:同學們可真聰明!是的,地圖上的距離是按一定的比把實際的距離縮小了畫在圖紙上的。今天我們就來研究這個問題:比例尺。(板書課題)【設計意圖】運用學生熟悉的現(xiàn)象導入,給學生帶來的是愉快的心情和積極的學習態(tài)度,順其自然進入學習狀態(tài),達到導入的目的。(二)探究新知教學比例尺的意義及種類,理解比例尺的含義以及關系式。1、閱讀教材第53頁關于比例尺的內容。師:閱讀教材后,匯報你知道了哪些關于比例尺的知識。生1:通過閱讀我知道:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。圖上距離∶實際距離=比例尺。(板書比例尺的意義)=比例尺生2:比例尺是繪圖時用的,它是把實際距離按一定的比縮小或擴大,再畫在圖紙上。生3:教材介紹說,地圖上的比例尺有1∶100000000,這是數(shù)值比例尺,它也可以寫成這種形式,也叫數(shù)值比例尺。(板書)生4:老師,我看見這樣表示比例尺的: 師:這叫線段比例尺。 它表示的是:圖上1厘米的距離相當于地面上50 km的實際距離。(板書)生5:我會把上面的線段比例尺改成數(shù)值比例尺。圖上距離∶實際距離。=1 cm∶50 km=1 cm∶5000000 cm(單位要相同)=1∶5000000(板書過程)生6:比例尺1∶5000000表示圖上距離是實際距離的。實際距離是圖上距離的5000000倍。
(一)復習導入 1. 師:同學們,你們經常去超市吧?超市里有時候會有打折的活動,你知道什么是打折嗎?(課件第2張)生:商店有時降價銷售商品,叫做打折扣銷售,俗稱“打折”。2.你知道打折的含義嗎?幾折就表示十分之幾,也就是百分之幾十。比如打七折,就是按照原價的十分之七出售,也就是按原價的70%出售。這節(jié)課我們就來學習有關折扣的知識。(課件第3張)【設計意圖】聯(lián)系學生的生活實際引入課題,引起學生學習興趣,使學生體會到生活中處處有數(shù)學。(二)探究新知 1、探究折扣的含義,計算打折后的價錢。(課件第3張)(1)星期天,小雨和爸爸來到商場買東西,正好趕上打折活動。小雨問爸爸:什么叫做“八五折”?你能回答小雨的問題嗎?生1:“八五折”就是按原價的85%出售。你知道“九折”是多少嗎?生2:“九折”就是按原價的90%出售。(2)爸爸給小雨買了一輛自行車,原價180元,現(xiàn)在商店打八五折出售。買這輛車用了多少錢?你會列式嗎?(課件第4張)小組合作:你是怎樣想的?說說你的思考過程。(課件第5張)(3)匯報交流:生1:把原價看做單位“1”,打八五折就是按原價的85%出售。(課件第6張)生2:現(xiàn)價=原價×折扣,求現(xiàn)價,做乘法。生3:180×85%=153(元)答:買這輛車用了153元。2、探究計算打折后便宜了多少錢的方法。爸爸買了一個隨身聽,原價160元,現(xiàn)在只花了九折的錢,比原價便宜了多少元?(課件第7張)(1)小組討論:先求什么?再求什么?說說你的思考過程。生1:我先求現(xiàn)價是多少,再求比原價便宜了多少元。(課件第8張)列式為:160×90%=144(元)160-144=16(元)答:比原價便宜了16元。生2:我先求現(xiàn)價比原價便宜了百分之幾,再求比原價便宜了多少元。(課件第9張)列式為:160×(1-90%)=160×10%=16(元)
2.過程與方法 培養(yǎng)學生的應用意識和實踐能力,使學生感受數(shù)學在生活中的作用。3.情感態(tài)度與價值觀結合實際對學生進行思想品德教育,鼓勵學生節(jié)約用錢,支援貧困地區(qū)的失學兒童。 【教學重點】 理解本金、利率和利息的含義正確地計算利息。 【教學難點】 正確地計算利息?!窘虒W方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法?!菊n前準備】 多媒體課件【課時安排】 1課時【教學過程】(一)復習導入 1. 師:同學們,你們到銀行存錢或取過錢嗎?(課件第2張)人們?yōu)槭裁匆彦X存入銀行呢?生1:人們常常把暫時不用的錢存入銀行儲蓄起來。(課件第3張)生2:儲蓄不僅可以支援國家建設,也使得個人錢財更安全,還可以增加一些收入。2.師:這節(jié)課我們就走進銀行,來來學習“利率”的知識。(板書課題:利率)
2.過程與方法 通過小組合作整理知識框架,提高學習的系統(tǒng)性,培養(yǎng)學生歸納、總結等自我復習能力及團隊合作精神,加強生與生之間的合作學習能力和綜合運用數(shù)學知識解決實際生活問題的能力。3.情感態(tài)度與價值觀在復習活動中讓學生體驗數(shù)學與生活實際的密切聯(lián)系,培養(yǎng)學生的數(shù)學應用意識,激發(fā)學生成功學習數(shù)學和自信心和創(chuàng)新意識,滲透事物間是相互聯(lián)系的辯證唯物主義觀點?!窘虒W重點】 理解比和比例的意義、性質,掌握關于比和比例的一些實際運用和計算?!窘虒W難點】能理清知識間的聯(lián)系,建構起知識網絡?!窘虒W方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法?!菊n前準備】
1.整理用字母表示數(shù)。(1)梳理知識:用字母表示數(shù)量關系:師:用字母可以表示什么?生:用字母表示運算定律用字母表示計算公式用字母表示計算方法師:你能舉例說明嗎?生:字母表示 數(shù)量關系路程=速度×時間 s=vt總價=單價×數(shù)量 c=an工作總量=工作效率×工作時間 c=at(2)字母表示計算方法:+=(3)用字母表示計算公式。師:用字母可以表示哪些平面圖形的計算公式生:長方形 周長 c=(a+b) ×2 面積:s=ab 正方形 周長 c=4a 面積:s=a2 平行四邊形 面積 s =ah三角形 面積 s=ah¸2 梯形 面積 s=(a+b)·h¸2 圓 周長c=πd=2πr 面積 s=πr2(4)用字母表示運算定律加法交換律 a+b=b+a 加法結合律 (a+b)+c=a+(b+c)乘法交換律 a×b=b×a乘法結合律 (a×b)×c=a×(b×c)乘法分配律 (a+b)×c=a×c+b×c2.在一個含有字母的式子里,數(shù)與字母、字母與字母相乘,書寫時應注意的問題。師:在一個含有字母的式子里,數(shù)與字母、字母與字母相乘,書寫時應注意什么?生交流:(1)在含有字母的式子里,數(shù)和字母中間的乘號可以用“?”代替,也可以省略不寫。(2)省略乘號時,應當把數(shù)寫在字母的前面。(3)數(shù)與數(shù)之間的乘號不能省略。加號、減號、除號都不能省略。3. 典題訓練(1)填一填。①李奶奶家本月用電a千瓦時,比上個月多用10千瓦時,上個月用電( )千瓦時。②如果每千瓦時電的價格是c元,李奶奶家本月的電費是( )元。李奶奶家銀行繳費卡上原有215元,扣除本月電費后,還剩( )元。③小明今年m 歲,媽媽的歲數(shù)比她的3倍少6歲。媽媽的歲數(shù)是( )歲。如果m=12,媽媽今年是( )歲。④三個連續(xù)的自然數(shù),最大的一個是n,那么最小的一個數(shù)是( )。(2)連 一 連。比a多3的數(shù) a3比a少3的數(shù) 3a3個a相加的和 a+33個a相乘的積 a-3a的3倍 a的
(一)復習導入 1. 師:同學們,你們去過這些景區(qū)嗎?(課件第2張)鳥巢、水立方、市容衛(wèi)生、綠化建設、城市規(guī)劃建設、航天事業(yè)的發(fā)展。 2.師:我國的經濟建設日新月異,人民生活的不斷提高,基礎建設全面展開。你知道這些設施的費用是從哪兒來的嗎?生:這些設施的費用都是政府投資的,是國家出錢建設的。師:國家的錢又是從哪兒來的?生:國家的財源主要來自稅收。3.導出納稅、稅率。(課件第3張)生1:納稅是根據(jù)國家稅法的有關規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。生2:稅收是國家收入的主要來源之一。國家用收來的稅款發(fā)展經濟、科技、教育、文化和國防等事業(yè)。生3:每個公民都有依法納稅的義務哦!這節(jié)課我們就來學習有關稅收的知識。板書課題:稅率【設計意圖】 聯(lián)系學生的生活實際,使學生知道每個公民都有依法納稅的義務,增強學生的納稅意識。(二)探究新知 1、探究稅率的含義。(課件第4張)(1)你知道哪些納稅項目?應該怎樣繳納稅款呢?生1:稅收主要分為消費稅、增值稅、營業(yè)稅和個人所得稅等幾類。生2:繳納的稅款叫做應納稅額,應納稅額與各種收入(銷售額、營業(yè)額……)的比率叫做稅率。2、探索應納稅額的計算。(課件第5張)(1)有一家飯店10月份的營業(yè)額是30萬元,如果按營業(yè)額的5%繳納營業(yè)稅,這家飯店10月份應繳納營業(yè)稅多少萬元?(2)小組討論:你是怎樣想的?說說你的思考過程。(3)匯報交流:(課件第6張)生1:繳納的營業(yè)稅是營業(yè)額的5%。生2:求營業(yè)額的5%是多少,用乘法計算。生3:30×5%=1.5(萬元)答:這家飯店10月份應繳納營業(yè)稅1.5萬元。3、做一做。(課件第7張)(1)李阿姨的月工資是5000元,扣除3500元個稅免征額后的部分需要按3%的稅率繳納個人所得稅。她應繳個人所得稅多少元?小組合作:你會做嗎?說說你的想法。匯報交流:(課件第8張)生1:“扣除3500元個稅免征額后的部分”這句話是什么意思?生2:要從工資總數(shù)里減去3500元,剩下的錢按3%的稅率繳稅。生3:(5000-3500)×3%=1500×0.03=45(元)答:她應繳個人所得稅45元。 (2)計算某商場5月份商品零售營業(yè)稅。(課件第9張) 你會做嗎?說說你的想法。小組合作:你是怎樣想的?說說你的思考過程。(課件第10張)匯報交流:(課件第11張)生:先求總營業(yè)額,再求營業(yè)稅。 72+35+46+21+56=230(萬元)230×5%=1.15(萬元) 答:這個商場5月份商品零售營業(yè)稅是1.15萬元。 (3)豐華商場9月份按規(guī)定繳了1.85萬元的營業(yè)稅,他們納稅的稅率是5%。這個商場9月份的營業(yè)額是多少萬元?(課件第12張)生1:把營業(yè)額看做單位“1”,求營業(yè)額,做除法。生2:1.85÷5%=1.85÷0.05=370(萬元)答:這個商場9月份的營業(yè)額是370萬元。生3:把營業(yè)額看做單位“1”,求營業(yè)額,也可以列方程解答。(課件第13張)解:設這個商場9月份的營業(yè)額是x萬元。
(一)觀圖激趣、設疑導入 師:同學們,今天和老師一起完成一個知識大比拼的游戲,(PPT課件出示)準備好了嗎?1、填空。15∶3=( )∶( )2∶3=( )÷( )0.2=( )∶2=( )÷62、根據(jù)比例的基本性質,把下列各比改寫為乘法等式。3:8=15:40 x:4=1:2生:準備好了。師:現(xiàn)在我們開始。師:今天和老師學習怎樣解比例。(板書課題:解比例)【設計意圖】這種方法的導入,讓學生更快、更集中注意力奔向主題,沒有渲染的成分,簡單實用。(二)探究新知1、自學解比例的意義師:閱讀教材第42頁,理解什么叫做解比例。生:求比例中的未知項叫做解比例。教師板書:求比例中的未知項叫做解比例。2、學習例2,應用比例的基本性質解比例。(1)出示例2的PPT課件。法國巴黎的埃菲爾鐵塔高度約320 m。北京的世界公園里有一座埃菲爾鐵塔的模型,它的高度與原塔高度的比是1∶10。這座模型高多少米?(2)理解題意,弄清模型的高度∶原塔高度=1∶10。師:同學們,你是怎樣理解題目中1∶10的?生:題目中告訴我們1∶10是埃菲爾鐵塔模型的高度與原塔高度的比。師:你能根據(jù)題意寫出比例關系式嗎?生:根據(jù)題意列比例關系式:模型的高度∶原塔高度=1∶10。師:這個關系式用數(shù)字該怎樣表示?生:老師,在這個比例中我只知道三個數(shù)字,模型的高度的數(shù)量我不知道是幾呀?師:這位同學觀察得很仔細,哪位同學愿意幫助他解決這個問題?生:老師我想用字母x代替模型高度的數(shù)量,您看可以嗎?師:好的,你的想法非常的好,也很正確!師:題目中告訴我們原塔高度是多少?生:320 m。
(一)觀圖激趣、設疑導入 1、(PPT課件出示復習題)2、引導學生復習比例尺是圖上距離與實際距離的比,并進行相應的計算。生1:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。生2:圖上距離∶實際距離=比例尺或=比例尺。(PPT課件出示問題)在一幅地圖上量得A地點到B地點的圖上距離是5 cm,已知這幅地圖的比例尺是1∶4000000,那么A地點到B地點的實際距離是多少千米?師:在這里已知的條件有哪些?生1:知道兩地的圖上距離是5 cm。生2:知道比例尺是1∶4000000。師:要解決的問題是什么?生:計算兩地的實際距離是多少千米。師:這節(jié)課我們就接著來學習比例尺的應用,學習如何利用比例尺來解決實際問題,也就是已知比例尺和圖上距離,求實際距離。(板書課題)【設計意圖】通過把復習題中的習題變換已知和未知條件來變成本節(jié)課要解決的問題,使學生產生濃厚的興趣,并且,也有助于培養(yǎng)學生舉一反三、觸類旁通的能力,使學生認識到數(shù)學知識的靈活性。(二)探究新知探究學習例2,已知比例尺和圖上距離,求實際距離。1、PPT課件出示P54例3。下面是北京軌道交通路線示意圖。地鐵1號線從蘋果園站至四惠東站在圖中的長度大約是7.8 cm,從蘋果園站至四惠東站的實際長度大約是多少千米?2、引導學生分析探究:師:從例題中可以知道哪些已知條件?生:可以知道兩站的圖上距離大約是7.8cm。師:這是從題目中直接讀出來的,那么從所給的圖中還能觀察到什么條件呢?生:可以知道比例尺是1∶400000。布置學生小組討論怎么樣解決問題。學生以小組為單位進行合作學習,教師進行指導。3、匯報學習成果,師生共同探究:師:你們是怎么解答的?生1:通過列方程來解答的。生2:根據(jù)題意,可以先設實際長度為x cm,再根據(jù)“圖上距離∶實際距離=比例尺”,列方程解答。師:解答時要注意什么?生1:要求實際距離是多少千米,但已知的圖上距離是多少厘米,可以先設實際距離為x cm,算出實際距離的厘米數(shù)后,再化成千米數(shù)。生2:根據(jù)“圖上距離∶實際距離=比例尺”,可以用解比例的方法求出實際距離。4、完成解答:(板書解題過程)圖上距離:實際距離=比例尺解:設從蘋果園站到四惠東站的實際長度是x cm。=x=7.8×400000x=31200003120000 cm=31.2 km答:從蘋果園站到四惠東站的實際長度大約是31.2 km。5、拓展延伸:師:我們除了用方程解答之外,還可以用什么方法解答?生:可以用算術方法解答。師:可以怎樣來分析呢?生:在“圖上距離∶實際距離=比例尺”中,實際距離既可看成分數(shù)的分母,又可看成除法中的除數(shù),所以可得出實際距離=圖上距離÷比例尺。師:我們來共同完成解答:(板書過程)圖上距離:比例尺=實際距離7.8÷=3120000(cm)3120000 cm=31.2 km答:從蘋果園站到四惠東站的實際長度大約是31.2 km。6、牛刀小試。(1)師:我們一起來做兩個練習題,看我們對新知識的掌握程度如何。(PPT課件出示)①教材P54做一做。先把教材P54做一做的圖中的線段比例尺改寫成數(shù)值比例尺,再用直尺量出圖中河西村與汽車站之間的距離是多少厘米,并計算出兩地的實際距離大約是多少。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。