解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價(jià)黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過數(shù)值計(jì)算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時(shí),最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)
問題2、如何用測角儀測量一個(gè)低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時(shí),轉(zhuǎn)動(dòng)度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點(diǎn)與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點(diǎn)A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點(diǎn)A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
如圖,課外數(shù)學(xué)小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進(jìn)而求出EF的長,得出答案.解:延長DE交AB延長線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高或垂線構(gòu)造直角三角形.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計(jì)算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計(jì)算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計(jì)算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運(yùn)用計(jì)算器一定要注意計(jì)算器說明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時(shí),常常使用計(jì)算器幫助我們處理比較復(fù)雜的計(jì)算。
③設(shè)每件襯衣降價(jià)x元,獲得的利潤為y元,則定價(jià)為 元 ,每件利潤為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時(shí)有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價(jià)多少元時(shí),才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過配方法求出二次函數(shù)的最值?!? 達(dá)標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個(gè)邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時(shí)矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時(shí)可全部租出;當(dāng)每輛車的日租金提高10元時(shí),每天租出的汽車會(huì)相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會(huì)使公司一天有最多的收入?
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問題的過程中往往會(huì)忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.
【深入研讀,探究方法】1.思路清晰、縝密。開頭緊扣論題,由“格物致知”的出處,引出對其含義的理解以及我國古代并不重視真正的“格物致知”的原因分析,澄清人們的錯(cuò)誤認(rèn)識(shí);接著作者從實(shí)驗(yàn)過程的兩個(gè)特點(diǎn)、中國學(xué)生存在的問題和作者自己的親身經(jīng)驗(yàn)三個(gè)方面分析真正的“格物致知”精神的重要性;最后指出真正的“格物致知”精神的兩個(gè)意義,并發(fā)出號召。全文思路清晰,說理嚴(yán)密。2.舉例論證、道理論證和對比論證相結(jié)合,論述充分有力。文章在列舉事例時(shí),采用正面事例和反面事例相結(jié)合的說理方法。如反面事例,文中第4段舉了王陽明“格”竹子的事例,證明了中國傳統(tǒng)的教育并不重視真正的格物致知;在第11段擺了中國學(xué)生大都偏向理論輕視實(shí)驗(yàn)的事實(shí);第12段又舉了自己到美國念物理時(shí)吃的苦頭。
水的性質(zhì)水是液體。石塊和木塊有一定的形狀,無論放在桌子上或者盒子里,它們都不會(huì)改變自己的形狀,都是固體。水就不同,放在圓杯子里就成為圓形,放在方盒子里就成了方形,它沒有一定的形狀。水是無色透明的。有人說水是白色的,這話錯(cuò)了。拿水同牛奶比較一下就會(huì)明白,牛奶才是白色的,水是什么顏色也沒有的。如果把一根筷子插入牛奶里,我們就看不見它。而把一根筷子插入清水中,我們能夠透過清水看見插入的筷子。水是無嗅、無味的。怎樣來區(qū)分無色透明的燒酒和水呢?光憑肉眼是毫無辦法的。只要聞一聞,嘗一嘗就能正確無誤地區(qū)分了。燒酒有酒的氣味和味道,而水卻什么氣味、什么味道也沒有。因此,在正常的情況下,水是無色、無嗅、無味的液體。
教學(xué)目標(biāo):知識(shí)和能力目標(biāo):1.積累一些文言字詞。2.了解兩篇短文的思想內(nèi)容,充分領(lǐng)略作者的情懷,認(rèn)識(shí)這種情懷產(chǎn)生的背景。3.背誦并默寫這兩篇短文。過程和方法目標(biāo):1.加強(qiáng)朗讀訓(xùn)練,提高朗讀能力。2.把握兩文托物言志的寫法。情感態(tài)度和價(jià)值目標(biāo):1.學(xué)習(xí)《陋室銘》,感受作者安貧樂道的生活情趣,學(xué)習(xí)作者高潔傲岸的節(jié)操。2.學(xué)習(xí)《愛蓮說》,認(rèn)識(shí)作者不慕名利、潔身自好的生活態(tài)度,感受其高雅脫俗的情懷。教學(xué)重點(diǎn):1.朗讀課文、背誦課文。2.引導(dǎo)學(xué)生理解文章表達(dá)的情感,欣賞兩文的語言之美,手法之美。教學(xué)難點(diǎn):1.辨析《陋室銘》中結(jié)尾引孔子的話“何陋之有”的含義,及“無絲竹之亂耳,無案牘之勞形”的言外之意;理解類比手法的運(yùn)用。2. 《愛蓮說》文,具有哪些美好品質(zhì)的人才是作者心目中的君子?如何辨析“蓮之愛”與“菊之愛”?理解映襯手法的運(yùn)用。教法學(xué)法:朗讀法 ,串講伐,合作探究法,練習(xí)法。
(1)一個(gè)快落山的太陽,跟大家講的,更多的是自己一生奮斗過來的體會(huì)。指61歲的老人。(2)加入人家說我是權(quán)威,也許還馬馬虎虎。作者自謙的說法,指成績還過得去。(3)明明是一個(gè)過去時(shí)態(tài),大家誤認(rèn)為是現(xiàn)在時(shí)態(tài)。指作者認(rèn)為自己不適合再做權(quán)威了。(4)扶植年輕人我覺得是一種歷史的潮流,當(dāng)然我們要?jiǎng)?chuàng)造條件,就是把他們推到需要刺激的風(fēng)口浪尖上。比喻重要的崗位或市場的前沿?!靖形蚓示渥印?.所以我知道自己是一個(gè)下午四五點(diǎn)鐘的太陽。各位呢,上午八九點(diǎn)鐘的太陽,這是本科生;碩士生呢,九十點(diǎn)鐘的太陽;博士生呢,十點(diǎn)十一點(diǎn)鐘的太陽。比喻,拉近了與聽眾的距離,倍感親切、期望和鼓舞。2.所以1992年前電視臺(tái)采訪我,我基本上都拒絕了。透過細(xì)節(jié),體現(xiàn)了堅(jiān)持不懈的科研精神。
一、導(dǎo)入新課在運(yùn)動(dòng)領(lǐng)域,美國有籃球夢之隊(duì),中國有跳水夢之隊(duì)。1982年11月24日,中國姑娘呂偉從10米跳臺(tái)縱身一躍,瞬間驚艷了全世界。這節(jié)課,我們一起來學(xué)習(xí)新聞特寫《“飛天”凌空——跳水姑娘呂偉奪魁記》,感受呂偉那“飛天”之美。二、教學(xué)新課目標(biāo)導(dǎo)學(xué)一:閱讀文章,把握內(nèi)容1.初讀文章,思考:這則新聞特寫報(bào)道了一件什么事?它是著重抓住什么場面來細(xì)致刻畫的?明確:這則新聞特寫報(bào)道的是“跳水姑娘呂偉在新德里亞運(yùn)會(huì)上贏得金牌”的事。是著重抓住呂偉跳水動(dòng)作來細(xì)致刻畫的。2.再讀課文,思考:本文記敘呂偉跳水過程時(shí)是按照什么順序來寫的?還記敘了哪些內(nèi)容?明確:是按照“準(zhǔn)備—起跳—騰空—入水”的順序來記敘的。本文作者首先記敘呂偉跳水之前的場面,描繪出一幅靜態(tài)畫面;再寫呂偉跳水動(dòng)作全過程,其中包括“準(zhǔn)備”“起跳”“騰空”“入水”四個(gè)部分;最后寫呂偉跳水后觀眾的反應(yīng)和裁判評分等情況。目標(biāo)導(dǎo)學(xué)二:研讀課文,體會(huì)寫作技巧
讀序言,可以了解內(nèi)容概要、寫作緣由和過程,明確寫書的綱領(lǐng)和目的。學(xué)生活動(dòng)一:用5分鐘時(shí)間瀏覽一篇序言(譯者序和作者序任挑一篇),運(yùn)用跳讀法采集信息點(diǎn),記錄在便利貼上。并互動(dòng)交流。小結(jié):序言告知我們,“紅星照耀中國”是作者在中國及世界局勢即將發(fā)生大轉(zhuǎn)變的關(guān)鍵一年,冒險(xiǎn)來到西北紅色區(qū)域采訪后得出的結(jié)論。那么他在蘇區(qū)見到了什么,聽到了什么呢?讓我們把視線焦點(diǎn)集中到他筆下那一群“不可征服”的革命青年身上。(二)讀目錄,了解主要內(nèi)容及寫作順序1.學(xué)生瀏覽目錄,說一說,這本書的寫作順序是怎么樣的?主要寫了哪幾方面的內(nèi)容?【方法指導(dǎo)】讀目錄,可以對作品的內(nèi)容要點(diǎn)和篇章結(jié)構(gòu)有所了解,迅速查閱到所需要的部分。明確:《紅星照耀中國》是一部文筆優(yōu)美的紀(jì)實(shí)性很強(qiáng)的報(bào)道性作品。作者按照事件發(fā)生的自然時(shí)間順序真實(shí)記錄了自1936年6月至10月在我國西北革命根據(jù)地進(jìn)行實(shí)地采訪的所見所聞。該書絕大部分素材來自作者采訪的第一手資料,向全世界真實(shí)報(bào)道了中國和中國工農(nóng)紅軍以及許多紅軍領(lǐng)袖、紅軍將領(lǐng)的情況。
四、范例學(xué)習(xí)、理解領(lǐng)會(huì)例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時(shí)刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時(shí)乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當(dāng)乙木桿移動(dòng)到什么位置時(shí),其影子剛好不落在墻上?(3)在(2)的情況下,如果測得甲、乙木桿的影子長分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學(xué)生畫圖、 實(shí)驗(yàn)、觀察、探索。五、隨堂練習(xí)課本隨堂練習(xí) 學(xué)生觀察、畫圖、合作交流。六、課堂總結(jié)本節(jié)課通過各種實(shí)踐活動(dòng),促進(jìn)大家對內(nèi)容的理解,本課內(nèi)容,要體會(huì)物體在太陽光下形成的不同影子,在操作中觀察不 同時(shí)刻影子的方向和大小變化特征。在同一時(shí)刻,物體的影子與它們的高度成比 例.
教學(xué)目標(biāo):1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會(huì)數(shù)形結(jié)合思想.教學(xué)重點(diǎn):特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點(diǎn):靈活應(yīng)用特殊角的三角函數(shù)值進(jìn)行計(jì)算.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細(xì)閱讀課本內(nèi)容后完成下面填空:
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會(huì)求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會(huì)結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個(gè)根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時(shí)的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
1.了解“兩點(diǎn)之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點(diǎn)及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導(dǎo)入愛護(hù)花草樹木是我們每個(gè)人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識(shí),你就會(huì)知道.二、合作探究探究點(diǎn)一:線段長度的計(jì)算【類型一】 根據(jù)線段的中點(diǎn)求線段的長如圖,若線段AB=20cm,點(diǎn)C是線段AB上一點(diǎn),M、N分別是線段AC、BC的中點(diǎn).(1)求線段MN的長;(2)根據(jù)(1)中的計(jì)算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.
(1)請你用代數(shù)式表示水渠的橫斷面面積;(2)計(jì)算當(dāng)a=3,b=1時(shí),水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a(bǔ)=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時(shí)水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時(shí)需搞清下列幾個(gè)問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個(gè)量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計(jì)教學(xué)過程中,應(yīng)通過活動(dòng)使學(xué)生感知代數(shù)式運(yùn)算在判斷和推理上的意義,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅(jiān)實(shí)的基礎(chǔ).
方法總結(jié):在分辨一個(gè)圖形是否為多邊形時(shí),一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對照和分析,即可判定.探究點(diǎn)二:確定多邊形的對角線一個(gè)多邊形從一個(gè)頂點(diǎn)最多能引出2015條對角線,這個(gè)多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個(gè)多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個(gè)頂點(diǎn)可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點(diǎn)三:求扇形圓心角將一個(gè)圓分割成三個(gè)扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個(gè)扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個(gè)扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;