解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時,一般是求什么,設(shè)什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應(yīng)用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書設(shè)計列方程組,解決問題)一般步驟:審、設(shè)、列、解、驗、答關(guān)鍵:找等量關(guān)系通過“雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的“趣”;進一步強調(diào)數(shù)學(xué)與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神;進一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.
第三環(huán)節(jié):課堂小結(jié)活動內(nèi)容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應(yīng)該注意的是什么?關(guān)鍵是什么?3. 通過今天的學(xué)習(xí),你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學(xué)生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學(xué)生說出自己的心得體會及疑問.活動意圖:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點及數(shù)學(xué)方法,使知識系統(tǒng)化.說明:還可以建議有條件的學(xué)生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學(xué)還可互相編題考察對方;還可以設(shè)置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學(xué)生的學(xué)習(xí)興趣和信心。
【設(shè)計意圖:讓學(xué)生在操作、探索的基礎(chǔ)上,組內(nèi)交流想法,再在班內(nèi)交流匯報,讓學(xué)生的語言得到相互交流、碰撞,從而不斷激發(fā)學(xué)生的思維火花?!繋煟耗隳馨堰@些擺法用算式寫出來嗎?(學(xué)生獨立寫出算式并匯報)依學(xué)生匯報板書:1×12=122×6=1212×1=126×2=123×4=124×3=12師:請同學(xué)們觀察一下,哪兩道算式的因數(shù)一樣?學(xué)生觀察算式,找出因數(shù)一樣的算式。師:那么,這6個算式最少能用幾種算式表示出來?引導(dǎo)學(xué)生說出能用3種方法表示,這三種方法是:1×12=122×6=123×4=12,并指明算式一樣時選擇其中一種說出來。板書:12=1×12=2×6=3×4師:同學(xué)們觀察一下,12的因數(shù)有哪幾個?(學(xué)生說出12的因數(shù)有:1、12、2、6、3、4。)師:拼長方形與找因數(shù)有什么關(guān)系呢?(指名學(xué)生說一說)師:根據(jù)剛才的操作交流,請同學(xué)們說一說怎樣找一個數(shù)的因數(shù)呢?(學(xué)生思考片刻后匯報,可以組內(nèi)交流。)引導(dǎo)學(xué)生說出:用乘法思路想,看哪兩個數(shù)相乘得12,然后一對一對找出來。
第一:說教材。“質(zhì)數(shù)和合數(shù)”是九年義務(wù)教育小學(xué)數(shù)學(xué)五年級(上)第三單元的內(nèi)容,在教材第39~40頁;是學(xué)生學(xué)習(xí)了因數(shù)和倍數(shù)的意義,了解了2、5、3倍數(shù)的特征之后的重要知識,它是學(xué)生學(xué)習(xí)分解質(zhì)因數(shù)、求最大公約數(shù)和最小公倍數(shù)的基礎(chǔ),在本章教學(xué)中起著承前啟后的重要作用。第二:說教法:根據(jù)新課標(biāo)的精神和學(xué)生實際,我將本節(jié)課教學(xué)目標(biāo)定為:1)找因數(shù)填表格經(jīng)歷探索質(zhì)數(shù)與合數(shù)的過程,理解質(zhì)數(shù)與合數(shù)的意義;2)能正確判斷一個數(shù)是質(zhì)數(shù)或合數(shù);3)在研究質(zhì)數(shù)的過程中豐富對數(shù)學(xué)發(fā)展的認(rèn)識,感受數(shù)學(xué)發(fā)展的文化魅力;4)、在猜想——驗證——概括——理解的過程中體會學(xué)習(xí)數(shù)學(xué)的樂趣,積累數(shù)學(xué)學(xué)習(xí)的方法。第三:說教學(xué)重難點重點:理解質(zhì)數(shù)與合數(shù)的意義。難點:能正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù),體會數(shù)學(xué)學(xué)習(xí)的方法。教學(xué)準(zhǔn)備:課件教學(xué)安排:兩課時。
課程標(biāo)準(zhǔn)中明確指出:“小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容絕大多數(shù)可以聯(lián)系學(xué)生的生活實際,找準(zhǔn)每一節(jié)教材內(nèi)容與學(xué)生生活實際的“切入點”可讓學(xué)生產(chǎn)生一種熟悉感、親切感“,以及“數(shù)學(xué)教學(xué)活動中,教師應(yīng)向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能?!币獙⑦@個理念落實在課堂教學(xué)中,就要求教師能根據(jù)教學(xué)的具體內(nèi)容,選擇恰當(dāng)?shù)膶W(xué)習(xí)方式,并巧妙創(chuàng)設(shè)學(xué)生主動探索的機會,變“接受學(xué)習(xí)”為“創(chuàng)造學(xué)習(xí)”,讓學(xué)生在觀察、操作、討論、交流、歸納、整理、概括的過程中學(xué)習(xí)新知,充分以學(xué)生為主體,逐步培養(yǎng)學(xué)生的創(chuàng)新意識,形成初步的探索和解決問題的能力。根據(jù)以上思想,本節(jié)課的設(shè)計我主要從尊重學(xué)生已有的知識經(jīng)驗;在觀察與操作中去親身體驗知識的形成過程,掌握約分的方法。
2、提出問題:3張大餅怎樣能夠平均分給唐僧師徒四人呢?每人得到大餅的多少張呢?3、揭示課題:分餅二、動手操作,探究新知:活動操作一:3張餅平均分給4個人。1、要求學(xué)生用準(zhǔn)備好的圓紙片代表餅,剪一剪,拼一拼,畫一畫,小組交流自己的想法。教師巡視并進行指導(dǎo)。2、各小組匯報分法及分得的結(jié)果。(指名回答)第一種分法:把一張一張的餅平均分成4份,每人分每張餅的,共分一張餅的。并請學(xué)生上臺演示分的整個過程。第二種分法:把3張餅疊起來,平均分成4份,每人分得3張餅的,也是張餅,請學(xué)生上臺演示分的整個過程。3、演示學(xué)生兩種分法的圖片:4、請觀察,這個分?jǐn)?shù)有什么特點,分子比分母小,你還能舉幾個這樣的例子嗎?像這樣的分?jǐn)?shù)叫作真分?jǐn)?shù),真分?jǐn)?shù)小于1。
此圖是一個復(fù)式折線統(tǒng)計圖,考察內(nèi)容是根據(jù)統(tǒng)計圖,進行數(shù)據(jù)的有效分析。(1)因為統(tǒng)計圖中藍色的折線表示學(xué)齡兒童,根據(jù)對學(xué)齡兒童的折線數(shù)據(jù)分析發(fā)現(xiàn):1980年的學(xué)齡兒童最多,2000年的學(xué)齡兒童最少。(2)根據(jù)題目要求的分析:沒上學(xué)的學(xué)齡兒童實際上是指:學(xué)齡兒童的人數(shù)與實際入學(xué)兒童人數(shù)的差。通過仔細(xì)觀察統(tǒng)計圖,可以直觀地發(fā)現(xiàn):1980年的學(xué)齡兒童和入學(xué)人數(shù)之間的差值最大,2000年的學(xué)齡兒童和入學(xué)人數(shù)之間的差值最小。所以,1980年沒上學(xué)的學(xué)齡兒童最多,2000年的最少。(3)這一問比較開放,只要合理即可。三、練習(xí)二十七第9——14題解答指導(dǎo):9. 81cm3=81ml 700dm3=0.7m3 560ml=0.56L 2.3dm3=2300cm310. 根據(jù)圖示可知:把鐵皮做成一個長方體,長方體的長為30—5×2=20(cm),寬為25—5×2=15(cm),高也就是切去的正方形的邊長5cm。(1)求“這個盒子用了多少鐵皮?”也就是求這個鐵皮盒子(無蓋)的表面積。
一、說教學(xué)目標(biāo)【知識與技能】:1、經(jīng)歷在實際問題中收集和處理數(shù)據(jù)、分析問題、獲得信息的過程,探索并掌握100以內(nèi)數(shù)的連加的計算方法,體驗算法多樣化。2、結(jié)合具體情境估算,并說明估算的過程。【數(shù)學(xué)思考】:讓學(xué)生學(xué)會獨立思考,體會數(shù)學(xué)的基本思想和思維方式?!締栴}解決】:初步學(xué)會從數(shù)學(xué)的角度發(fā)現(xiàn)問題和提出問題,綜合運用數(shù)學(xué)知識和其他知識解決簡單的數(shù)學(xué)問題,發(fā)展應(yīng)用意識和實踐能力?!厩楦袘B(tài)度價值觀】:養(yǎng)成傾聽的好習(xí)慣二、說教學(xué)重難點【教學(xué)重點】:100以內(nèi)數(shù)連加的計算方法【教學(xué)難點】:結(jié)合具體情境估算,并說明估算的過程三、 說教學(xué)方法創(chuàng)設(shè)情境法、引導(dǎo)法、自主學(xué)習(xí)法四、說教具多媒體課件
解析:先利用正比例函數(shù)解析式確定A點坐標(biāo),然后觀察函數(shù)圖象得到,當(dāng)1<x<2時,直線y=2x都在直線y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,則A點坐標(biāo)為(1,2),∴當(dāng)x>1時,2x>kx+b.∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(2,0),即不等式0<kx+b<2x的解集為1<x<2.故選C.方法總結(jié):本題考查了一次函數(shù)與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在y軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.三、板書設(shè)計1.通過函數(shù)圖象確定一元一次不等式的解集2.一元一次不等式與一次函數(shù)的關(guān)系本課時主要是掌握運用一次函數(shù)的圖象解一元一次不等式,在教學(xué)過程中采用講練結(jié)合的方法,讓學(xué)生充分參與到教學(xué)活動中,主動、自主的學(xué)習(xí).
解析:(1)根據(jù)題設(shè)條件,求出等量關(guān)系,列一元一次方程即可求解;(2)根據(jù)題設(shè)中的不等關(guān)系列出相應(yīng)的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設(shè)購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數(shù)9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設(shè)計一元一次不等式與一次函數(shù)關(guān)系的實際應(yīng)用分類討論思想、數(shù)形結(jié)合思想本課時結(jié)合生活中的實例組織學(xué)生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學(xué)生分析、解決問題的能力,從新課到練習(xí)都充分調(diào)動了學(xué)生的思考能力,為后面的學(xué)習(xí)打下基礎(chǔ).
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進行對比和篩選,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
(2)∵點G是BC的中點,BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書設(shè)計1.平行四邊形的判定定理3:對角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等,這個距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學(xué)主要通過分組討論、操作探究以及合作交流等方式來進行,在探究兩條平行線間的距離時,要讓學(xué)生進行合作交流.在解決有關(guān)平行四邊形的問題時,要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學(xué)生的邏輯思維能力.
[教材分析]本課時是《克和千克》這一單元的第一節(jié)課,主要介紹一些普通生活用品的重量認(rèn)識質(zhì)量單位克和千克,培養(yǎng)學(xué)生用數(shù)學(xué)觀點發(fā)現(xiàn)克和千克兩個質(zhì)量單位,為進一步學(xué)習(xí)有關(guān)克和千克之間的聯(lián)系做好準(zhǔn)備。[學(xué)情分析]對于活潑好動的二年級孩子來說,物體的重量他們有一定的生活體驗,同時,二年級學(xué)生形象思維能力較強,可以利用他們對身邊物體質(zhì)量來認(rèn)識克和千克。有了以上的認(rèn)識,我將本節(jié)課的教學(xué)目標(biāo)擬定為:[目標(biāo)定位]1、知識目標(biāo):讓學(xué)生在生動活潑的情境中初步認(rèn)識克和千克,建立克和千克的觀念,知道1000克=1千克2、能力目標(biāo):培養(yǎng)學(xué)生初步的觀察、操作能力,讓學(xué)生學(xué)會看秤培養(yǎng)動手能力。3、情感目標(biāo):培養(yǎng)學(xué)生自主探索的精神和增強生活意識。教學(xué)重難點:通過活動正確認(rèn)識克和千克的關(guān)系,知道1克和1千克的關(guān)系,難點建立克和千克的意識。
教學(xué)目標(biāo):1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結(jié)合思想.教學(xué)重點:特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點:靈活應(yīng)用特殊角的三角函數(shù)值進行計算.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細(xì)閱讀課本內(nèi)容后完成下面填空:
教學(xué)目標(biāo)(一)教學(xué)知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計算器進行有關(guān)三角函數(shù)的計算,并能對結(jié)果的意義進行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動,提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和解決問題的能力.教學(xué)難點根據(jù)題意,了解有關(guān)術(shù)語,準(zhǔn)確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標(biāo)訓(xùn)練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時可全部租出;當(dāng)每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?