(六)當堂達標(練習二、三 10分鐘)練習二讓學生口答,通過練習,鞏固學生對直線、射線、線段表示方法的掌握。練習三讓學生去黑板板演,教師檢驗對錯并重點強調(diào)幾何語言的表述。文字語言和圖形語言之間的轉(zhuǎn)化是難點,著重練習文字語言向圖形語言的轉(zhuǎn)化,提高幾何語言的理解與運用能力。當堂達標是檢查學習效果、鞏固知識、提高能力的重要手段。通過練習,學生會體驗到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時獲得信息反饋,以便課下查漏補缺。 (七)小結(jié)(3分鐘)教師提問“這節(jié)課我們學了哪些知識?”請學生回答,教師做適當補充。課堂小結(jié)對一節(jié)課起著“畫龍點晴”的作用,它能體現(xiàn)一節(jié)課所講的知識和數(shù)學思想。因此,在小結(jié)時,教師引導學生概括本節(jié)內(nèi)容的重點。
解析:水是生命之源,節(jié)約水資源是我們每個居民都應(yīng)有的意識.題中給出假如每人浪費一點水,當人數(shù)增多時,將是一個非常驚人的數(shù)字,100萬人每天浪費的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結(jié):從實際問題入手讓學生體會科學記數(shù)法的實際應(yīng)用.題中沒有直接給出數(shù)據(jù),應(yīng)先計算,再表示.探究點二:將用科學記數(shù)法表示的數(shù)轉(zhuǎn)換為原數(shù)已知下列用科學記數(shù)法表示的數(shù),寫出原來的數(shù):(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數(shù)點向右移動4位即可;(2)將6.070的小數(shù)點向右移動5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結(jié):將科學記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),就是把a的小數(shù)點向右移動n位所得到的數(shù).三、板書設(shè)計借助身邊熟悉的事物進一步體會大數(shù),積累數(shù)學活動經(jīng)驗,發(fā)展數(shù)感、空間感,培養(yǎng)學生自主學習的能力.
光年是表示較大距離的一個單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米。可見,1毫米= 納米,容易算出,1納米相當于1毫米的一百萬分之一。可想而知,1納米是多么的小。超微粒子的大小一般在1~100 納米范圍內(nèi),故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點,可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調(diào)性可制成隱形飛機的涂料。納米材料的表面積大,對外界環(huán)境(物理的和化學的)十分敏感,在制造傳感器方面是有前途的材料,目前已開發(fā)出測量溫度、熱輻射和檢測各種特定氣體的傳感器。在生物和醫(yī)學中也有重要應(yīng)用。納米材料科學是20世紀80年代末誕生并正在崛起的科技新領(lǐng)域,它將成為跨世紀的科技熱點之一。
[師]同學們想一想,你同父母一起去商店買衣服時,衣服上的號碼都有哪些,標志是什么?[生]我看到有些衣服上標有M、S、L、XL、XXL等號碼.但我不清楚代表的具體范圍.適合什么人穿.但肯定與身高、胖瘦有關(guān).[師]這位同學很善動腦,也愛觀察. S代表最小號,身高在150~155 cm的人適合穿S號.M號適合身高在155~160 cm的人群著裝…….廠家做衣服訂尺寸也并不是按所有人的尺寸定做,而是按某個范圍分組批量生產(chǎn).如何確定組距與組數(shù)呢?分組組數(shù)的確定,不僅與數(shù)據(jù)多少有關(guān),還與數(shù)據(jù)的取值情況有關(guān).在實際決定組數(shù)時,常有一個嘗試過程:先定組距,再計算出相應(yīng)的組數(shù).看看這個組數(shù)是否大致符合確定組數(shù)的經(jīng)驗法則.在嘗試中,往往要比較相應(yīng)于幾個組距的組數(shù),然后從中選定一個較為合適的組數(shù).我們一起看下表:小亮的做法.
1.進一步理解字母表示數(shù)的意義,能結(jié)合具體情景給字母賦于實際意義;理解代數(shù)式和代數(shù)式的值的意義,能解釋一些簡單代數(shù)式的實際背景或幾何意義,在具體情景中能求出代數(shù)式的值. (重難點)2.通過創(chuàng)設(shè)實際背景和引用符號,經(jīng)歷觀察、體驗、驗算、猜想、歸納等數(shù)學過程,體會數(shù)學與現(xiàn)實世界的聯(lián)系,增強符號感,發(fā)展運用符號解決問題和數(shù)學探究意識. 教法學法:教學方法:引導—探究—發(fā)現(xiàn)法.學習方法:自主探究與合作交流相結(jié)合.課前準備:多媒體課件、投影儀、電腦教學過程:一、創(chuàng)設(shè)情境,引入新課.欣賞視頻,導入新課師:國慶六十周年大閱兵,同學們看了嗎?首先請同學們來欣賞一段視頻.(26秒.定格在胡錦濤主席乘坐紅旗轎車閱兵的一個瞬間.)師:這是新中國成立以來,規(guī)模最大、裝備最新、機械化程度最高的一次大閱兵.
一、情境導入游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片《孩子,請不要私自下水》,并于觀看后在本校的2000名學生中作了抽樣調(diào)查.你能根據(jù)下面兩個不完整的統(tǒng)計圖回答以下問題嗎?(1)這次抽樣調(diào)查中,共調(diào)查了多少名學生?(2)補全兩個統(tǒng)計圖;(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學生中大約有多少人“一定會下河游泳”?二、合作探究探究點一:頻數(shù)直方圖的制作小紅家開了一個報亭,為了使每天進的某種報紙適量,小紅對這種報紙40天的銷售情況作了調(diào)查,這40天賣出這種報紙的份數(shù)如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數(shù)據(jù)分組,并繪制相應(yīng)的頻數(shù)直方圖.解析:先找出這組數(shù)據(jù)的最大值和最小值,再以10為組距把數(shù)據(jù)分組,然后制作頻數(shù)直方圖.解:通過觀察這組數(shù)據(jù)的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數(shù)分布表:
新建成的紅星中學,首次招收七年級新生12個班共500人,學校準備修建一個自行車車棚.請問需要修建多大面積的自行車車棚?請你設(shè)計一個調(diào)查方案解決這個問題.解析:決定自行車車棚面積的因素有兩個,即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點應(yīng)圍繞這兩個因素進行.解:調(diào)查方案如下:(1)對全體新生的到校方式進行問卷調(diào)查.調(diào)查問卷如下:你到校的方式是騎自行車嗎?A.經(jīng)常是 B.不經(jīng)常是C.很少是 D.從不是(2)根據(jù)調(diào)查問卷結(jié)果分類統(tǒng)計騎自行車的人數(shù);(3)實際測量或估計存放1輛自行車的大約占地面積;(4)根據(jù)學校的建設(shè)規(guī)劃、財力等因素確定自行車車棚的面積.方法總結(jié):確定調(diào)查方案時必須明確兩個問題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進行調(diào)查可以獲得這些數(shù)據(jù)?探究點三:從圖表中獲取信息小冰就公眾對在餐廳吸煙的態(tài)度進行了調(diào)查,并將調(diào)查結(jié)果制作成如圖所示的統(tǒng)計圖,請根據(jù)圖中的信息回答下列問題:
1. 小明的腳長23.6厘米,鞋號應(yīng)是 號。2.小亮的腳長25.1厘米,鞋號應(yīng)是 號。3.小王選了25號鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結(jié):剛才同學們都體會到了分組編碼使原來繁多,無敘的數(shù)據(jù)簡化、有序。因此分組、編碼是整理數(shù)據(jù)的一種重要的方法,在工商業(yè)、科研等活動中有廣泛的應(yīng)用(四)反饋練習課內(nèi)練習以下是某校七年級南,女生各10名右眼裸視的檢測結(jié)果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數(shù)據(jù)是用什么方法獲得的?(2)學生右眼視力跟性別有關(guān)嗎?為了回答這個問題,你將怎樣處理這組數(shù)據(jù)?你的結(jié)論是什么?(五). 歸納小結(jié),體味數(shù)學快樂通過本節(jié)課的學習,你有那些收獲?(課堂小結(jié)交給學生)數(shù)據(jù)收集的方法:直接觀察、測量、調(diào)查、實驗、查閱文獻資料、使用互連網(wǎng)等。整理數(shù)據(jù)的方法:分類、排序、分組編碼等。(學生可能還會指出鞋碼和腳長之間的關(guān)系等)
解析:本題是要求兩個未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設(shè)投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結(jié):利用平均數(shù)的公式解題時,要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯.三、板書設(shè)計平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關(guān)平均數(shù)問題的解決,提升學生的數(shù)學應(yīng)用能力.通過解決實際問題,體會數(shù)學與社會生活的密切聯(lián)系,了解數(shù)學的價值,增進學生對數(shù)學的理解和增加學好數(shù)學的信心.
探究點三:函數(shù)的圖象洗衣機在洗滌衣服時,每漿洗一遍都經(jīng)歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內(nèi)無水).在這三個過程中,洗衣機內(nèi)的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關(guān)系的圖象大致為()解析:∵洗衣機工作前洗衣機內(nèi)無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結(jié):本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設(shè)計函數(shù)定義:自變量、因變量、常量函數(shù)的關(guān)系式三種表示方法函數(shù)值函數(shù)的圖象在教學過程中,注意通過對以前學過的“變量之間的關(guān)系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設(shè)計,引導學生進行觀察、操作、交流、歸納等數(shù)學活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數(shù)概念的理解.
方法總結(jié):描述一個代數(shù)式的意義,可以從字母本身出發(fā)來描述字母之間的數(shù)量關(guān)系,也可以聯(lián)系生活實際或幾何背景賦予其中字母一定的實際意義加以描述.探究點四:根據(jù)實際問題列代數(shù)式用代數(shù)式表示下列各式:(1)王明同學買2本練習冊花了n元,那么買m本練習冊要花多少元?(2)正方體的棱長為a,那么它的表面積是多少?體積呢?解析:(1)根據(jù)買2本練習冊花了n元,得出買1本練習冊花n2元,再根據(jù)買了m本練習冊,即可列出算式.(2)根據(jù)正方體的棱長為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習冊花了n元,∴買1本練習冊花n2元,∴買m本練習冊要花12mn元;(2)∵正方體的棱長為a,∴它的表面積是6a2;它的體積是a3.方法總結(jié):此題考查了列代數(shù)式,用到的知識點包括正方體的表面積公式和體積公式,根據(jù)題意列出式子是解本題的關(guān)鍵.
議一議數(shù)軸上的兩個點,右邊點表示的數(shù)與左邊點表示的數(shù)有怎樣的大小關(guān)系?數(shù)軸上表示的數(shù),▁▁▁邊的總比▁▁▁邊的大;正數(shù)▁▁▁0,負數(shù)▁▁▁0,正數(shù)▁▁▁負數(shù)。練習:比較大?。?3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數(shù)軸?怎樣畫數(shù)軸。(2) 有理數(shù)與數(shù)軸上的點之間存在怎樣的關(guān)系?(3) 什么是相反數(shù)?怎樣求一個數(shù)的相反數(shù)?(4) 如何利用數(shù)軸比較有理數(shù)的大???5、隨堂練習:(1)下列說法正確的是( ) A、 數(shù)軸上的點只能表示有理數(shù)B、 一個數(shù)只能用數(shù)軸上的一個點表示C、 在1和3之間只有2D、 在數(shù)軸上離原點2個單位長度的點表示的數(shù)是2 (2)語句:①-5是相反數(shù)?②-5與+3互為相反數(shù)③-5是5的相反數(shù)④-5和5互為相反數(shù)⑤0的相反數(shù)是0⑥-0=0。上述說法中正確的是( )
將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來,并用“<”號連接各數(shù).解析:利用數(shù)軸上的點來表示相應(yīng)的數(shù),再利用它們對應(yīng)點的位置來判斷各數(shù)的大?。猓喝鐖D:由數(shù)軸可知-212<-2<0<+1<314.方法總結(jié):一般地,數(shù)軸上多個數(shù)的大小比較,可利用“數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大”這一性質(zhì)進行比較.探究點四:點在數(shù)軸上的移動問題點A為數(shù)軸上表示-2的動點,當點A沿數(shù)軸移動4個單位長度到點B時,點B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點A為數(shù)軸上表示-2的動點,①當點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-6;②當點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為2.故選C.方法總結(jié):點A在數(shù)軸上移動要注意分兩種情況:一個向左,一個向右,不要漏掉其中的一種情況.
本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內(nèi)容通過學生的生活經(jīng)驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學是鍛煉思維的體操”,數(shù)學教師應(yīng)通過一系列數(shù)學活動開啟學生的思維,因此對新數(shù)的學習不能僅僅停留于感性認識,還應(yīng)要求學生充分理解,并能用恰當數(shù)學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學生覺得新數(shù)并不抽象.(三)強化知識間聯(lián)系,注意糾錯既然稱之為“新數(shù)”,那它當然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學習“新數(shù)”,即第二課時教學埋下了伏筆,在教學中,要著重強調(diào)這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學奠好基.
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個3之間1的個數(shù)逐次加1).方法總結(jié):有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個有理數(shù)都可以化為分數(shù)形式,而無理數(shù)則不能.探究點二:借助計算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計x的整數(shù)部分,看它在哪兩個連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
方法總結(jié):本題考查了利用數(shù)軸,比較數(shù)的大小關(guān)系,對于含有絕對值的式子的化簡,要根據(jù)絕對值內(nèi)的式子的正負,去掉絕對值符號.探究點四:含括號的整式的化簡應(yīng)用某商店有一種商品每件成本a元,原來按成本增加b元定出售價,售出40件后,由于庫存積壓,調(diào)整為按售價的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價與后60件的售價即可確定出總售價;(2)由“利潤=售價-成本”列出關(guān)系式即可得到結(jié)果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結(jié):解決此類題目的關(guān)鍵是熟記去括號法則和熟練運用合并同類項的法則.
4、 填表:相反數(shù) 絕對值21 0 -0.75 5、 畫一條數(shù)軸,在數(shù)軸上分別標出絕對值是6 , 1.2 , 0 的數(shù)6、 計算:(1) (2) 五、探究學習1、某人因工作需要租出租車從A站出發(fā),先向南行駛6 Km至B處,后向北行駛10 Km至 C處,接著又向南行駛7 Km至D處,最后又向北行駛2 Km至E處。請通過列式計算回答下列兩個問題:(1) 這個人乘車一共行駛了多少千米?(2) 這個人最后的目的地在離出發(fā)地的什么方向上,相隔多少千米 ?2、寫出絕對值小于3的整數(shù),并把它們記在數(shù)軸上。六、小結(jié)一頭牛耕耘在一塊田 地上,忙碌了一整天,表面上它在原地踏步,沒有踏出這塊土地,但我們說,它付出了艱辛和汗水,因為它所走過 的距離之和,有時候我們是無法 想象的。這就是今天所學的絕對值的意義所在。所以絕對值是不考慮方向意義時的一種數(shù)值表示。七、布置作業(yè)做作業(yè)本中相應(yīng)的部分。
一、 背景與意義分析統(tǒng)計主要研究現(xiàn)實生活中的數(shù)據(jù),它通過收集、整理、描述和分析數(shù)據(jù)來幫助人們對事物的發(fā)展作出合理的判斷,能夠利用數(shù)據(jù)信息和對數(shù)據(jù)進行處理已成為信息時代每一位公民必備的素質(zhì)。通過對本章全面調(diào)查和抽樣調(diào)查的學習,學生可基本掌握收集和整理數(shù)據(jù)的方法。二、 學習與導學目標1 知識積累與疏導:通過復習小結(jié),進一步領(lǐng)悟到現(xiàn)實生活中通過數(shù)據(jù)處理,對未知的事情作出合理的推斷的事實。2 技能掌握與指導:通過復習,進一步明確數(shù)據(jù)處理的一般過程。3 智能提高與訓導:在與他人交流合作的過程中學會設(shè)計調(diào)查問卷。4 情感修煉與提高:積極創(chuàng)設(shè)情境,參與調(diào)查、整理數(shù)據(jù),體會社會調(diào)查的艱辛與樂趣。5 觀念確認與引導:體會從實踐中來到實踐中去的辨證思想。三、 障礙與生成關(guān)注調(diào)查問卷的設(shè)計及根據(jù)調(diào)查總結(jié)的報告給出合理的預測。四、 學程與導程活動活動一 回顧本章內(nèi)容,繪制知識結(jié)構(gòu)圖
一.學習目的和要求:1.對本章內(nèi)容的認識更全面、更系統(tǒng)化。2.進一步加深對本章基礎(chǔ)知識的理解以及基本技能的掌握,并能靈活運用。二.學習重點和難點:重點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算的靈活運用。難點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算的靈活運用與提高。三.學習方法:歸納,總結(jié) 交流、練習 探究 相結(jié)合 四.教學目標和教學目標解析:教學目標1 同類項 同類項:所含字母相同,并且相同字母的指數(shù)也分別相等的項,另外所有的常數(shù)項都是同類項。例如: 與 是同類項; 與 是同類項。注意:同類項與系數(shù)大小無關(guān),與字母的排列順序無關(guān)。教學目標2 合并同類項法則 合并同類項法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。
1、如圖,OA、OB是兩條射線,C是OA上一點,D、E是OB上兩點,則圖中共有 條錢段、它們分別是 ;圖中共有 射線,它們分別是 。2、如果線段AB=5cm,BC=3cm,那么A、C兩點間的距離是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、從3點到5點30分,時鐘的時針轉(zhuǎn)過了 度。5、一輪船航行到B處測得小島A的方向為北偏西30°,則從A處觀測此B處的方向為( ) A. 南偏東30° B. 東偏北30° C. 南偏東60° D. 東偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,則∠BOC的度數(shù)為( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如圖,AO⊥OB,直線CD過點O,且∠BOD=130°,求∠AOD的大小。8、已知:如圖,B、C兩點把線段AD分成2∶4∶3三部分,M是AD的中點,CD=6,求:線段MC的長。9、平面上有n個點(n≥2)且任意三個點不在同一直線上,經(jīng)過每兩個點畫一條直線,一共可以畫多少條直線?遷移:某足球比賽中有20個球隊進行單循環(huán)比賽(每兩隊之間必須比賽一場),那么一共要進行多少場比賽?
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。