(3)設(shè)點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
1.城市人口資源急速增長,對各類群眾的教育引領(lǐng)提出了新要求。伴隨城鎮(zhèn)化的發(fā)展,各類思想價值多元、利益訴求各異的群體涌向城市,滋生了三類問題。一是“新市民”群體對城市的認同感弱的問題。在城市擴張中,近××失地農(nóng)民變成了市民,并以安置小區(qū)的方式集中、分片居住,拆遷安置、就業(yè)保障、物業(yè)管理等矛盾問題突出。“新市民”脫離了習(xí)慣的農(nóng)村生產(chǎn)生活方式,對城市生活方式難以適應(yīng)認同感不強。二是“半城市化”群體對城市歸屬感弱的問題。城市吸引了近××萬流動人口就業(yè),并成為支撐城市建設(shè)發(fā)展的主力。該群體戶籍在農(nóng)村、生活在城市,其在教育醫(yī)療、社會保障、公共服務(wù)等方面享受不到與城市居民同等的權(quán)利,對城市缺乏歸屬感。三是“城市候鳥”群體對城市融入感弱的問題。隨著城市品質(zhì)形象的提升和康養(yǎng)旅游產(chǎn)業(yè)的蓬勃發(fā)展,全縣××%以上的新建商品房被外地人群購買。每年冬春季節(jié)約××萬“候鳥”人群涌入縣城,與原有城市居民在城市資源、公共服務(wù)等方面形成“競爭”態(tài)勢,城市候鳥群體對城市的融入感弱。
“搭積木、下棋”兩個詞語的認讀要結(jié)合課文中的插圖進行。這是學(xué)生喜愛的兩項活動,教師可用“誰在哪里干什么”來提問,在培養(yǎng)學(xué)生看圖說話的同時,進行詞語的認讀練習(xí)。
安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設(shè)備2臺,乙種設(shè)備10臺;②購買甲種設(shè)備3臺,乙種設(shè)備9臺;③購買甲種設(shè)備4臺,乙種設(shè)備8臺.方法總結(jié):列不等式組解應(yīng)用題時,一般只設(shè)一個未知數(shù),找出兩個或兩個以上的不等關(guān)系,相應(yīng)地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計1.一元一次不等式組的解法2.一元一次不等式組的實際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達題意的不等關(guān)系,再根據(jù)各個不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時要讓學(xué)生養(yǎng)成檢驗的習(xí)慣,感受運用數(shù)學(xué)知識解決問題的過程,提高實際操作能力.
知識與技能目標:1. 能正確說出三元一次方程(組)及其解的概念,能正確判別一組數(shù)是否是三元一次方程(組)的解;2. 會根據(jù)實際問題列出簡單的三元一次方程或三元一次方程組。過程與方法目標:1. 通過加深對概念的理解,提高對“元”和“次”的認識。2. 能夠逐步培養(yǎng)類比分析和歸納概括的能力,了解辯證統(tǒng)一的思想。情感態(tài)度與價值觀目標:通過對實際問題的分析,使學(xué)生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
(一)機構(gòu)編制人員方面 區(qū)退役軍人服務(wù)中心及各街道(鎮(zhèn))、社區(qū)(村)退役軍人服務(wù)站掛牌成立,在全區(qū)形成了覆蓋區(qū)、街道(鎮(zhèn))、社區(qū)(村)三級退役軍人服務(wù)體系。目前,區(qū)委編委已批復(fù)區(qū)退役軍人服務(wù)中心事業(yè)編制編制xx名;街道(鎮(zhèn))、社會人員編制尚未明確。 ?。ǘ┕ぷ鹘?jīng)費方面 區(qū)財政現(xiàn)已向區(qū)退役軍人事務(wù)局及服務(wù)中心撥付各項工作經(jīng)費xxx萬元。其中,先期撥付開辦經(jīng)費xx萬元用于購置辦公設(shè)備,后追加工作經(jīng)費xxx萬元,信息采集工作經(jīng)費x萬元,光榮牌制作經(jīng)費x萬元。
1.修訂各項安全管理制度,進一步細化教職工安全工作具體要求,使制度更具科學(xué)性、時代性及人性化?! ?.完善安全責(zé)任書簽訂方式,在教職工進一步明確職責(zé)的基礎(chǔ)上層層簽訂安全責(zé)任書,真正將安全責(zé)任落實到每一個崗位上,并認真履行職責(zé)?! ?.加強重點部位及重點人員操作的.安全檢查,采取定時和不定時的檢查,切實做到杜絕隱患,防范于未然,規(guī)范安全操作。
三是嚴控輿情轉(zhuǎn)播。針對目前輿情傳播情況,*要采取多種措施控制傳播范圍,積極主動加強與屬地同類型、有影響力的媒體平臺聯(lián)系,防止其進一步跟進導(dǎo)致事態(tài)進一步發(fā)酵。下面進行第五項議程,請*作工作安排。一是加強組織領(lǐng)導(dǎo)。*作為職能落實牽頭部門,要進一步加強與*溝通聯(lián)系,及時了解反饋處置情況,督導(dǎo)做好有關(guān)工作落實。涉及相關(guān)業(yè)務(wù)部門要密切配合做好具體問題的辦理、協(xié)調(diào)、改進及回復(fù)等工作,齊心協(xié)力做好本次輿情應(yīng)對處置工作。*是開展本次輿情處置的第一責(zé)任端口,要進一步提高思想認識,成立專門處理工作領(lǐng)導(dǎo)小組,明確責(zé)任分工,提升工作合力,對內(nèi)及時做好有關(guān)信息傳遞和問題、輿情控制等工作溝通協(xié)作,全力以赴做好應(yīng)對處置工作。二是強化責(zé)任落實。*要嚴格落實輿情突發(fā)事件處置辦法工作要求,以本次事件處置為契機,加強經(jīng)驗總結(jié),推動完善有關(guān)工作機制,夯實工作責(zé)任,定期做好輿情分析和問題研判,及時解答熱點話題的疑問和不解,同時利用好新媒體工具,積極引導(dǎo)輿論正向發(fā)展。
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標準方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認知的基礎(chǔ)上從幾何與代數(shù)兩 個角度去認識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標準》中要求通過豐富的實例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認知規(guī)律,有利于學(xué)生對概念的學(xué)習(xí)和理解.坐標法的教學(xué)貫穿了整個“圓錐曲線方程”一章,是學(xué)生應(yīng)重點掌握的基本數(shù)學(xué)方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進行教學(xué)
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標,∴S△EFP=4/3c2=12,∴c=3,即P點坐標為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標準方程.(1)兩個焦點的坐標分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標準方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設(shè)雙曲線的標準方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標準方程為x^2/3-y^2/5=1.(3)當焦點在x軸上時,可設(shè)雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標準方程為x^2/8-y^2/8=1.當焦點在y軸上時,可設(shè)雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標準方程為x^2/8-y^2/8=1.
還有其他解法嗎?從中讓學(xué)生體會解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗的方法,鼓勵他們養(yǎng)成檢驗的習(xí)慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?多媒體展示上面變形的過程,讓學(xué)生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學(xué)生活動:分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學(xué)生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.
1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學(xué)生活動:分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學(xué)生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.(三)理解性質(zhì),應(yīng)用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個變化過程可以叫做移項.學(xué)生活動:要求學(xué)生對課前解方程的變形能說出哪一過程是移項.對比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動:把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項變形解;三、四組同學(xué)(1)(2)題用移項變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、化簡、檢驗.)
1.確定研究對象,明確哪個是解釋變量,哪個是響應(yīng)變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉(zhuǎn)化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)
方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計上,強調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計上,強調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
為了明確甲、乙雙方的經(jīng)濟責(zé)任,保護雙方權(quán)益,分工協(xié)作,互相配合,確保集中供熱工程施工任務(wù)的順利完成,根據(jù)《中華人民共和國合同法》等有關(guān)法律、法規(guī)的規(guī)定,結(jié)合本工程實際情況,簽訂本合同,以資雙方共同遵守。第一條:工程名稱: 第二條:工程地點: 第三條:承包范圍: 3.1暖氣管道敷設(shè),各類閥門、安裝及管道保溫、壓力試驗等圖紙范圍內(nèi)的所有內(nèi)容。(具體內(nèi)容見設(shè)計圖及工程量清單)3.2 交工驗收。第四條:承包方式:包工、包料,第五條:合同價款:本工程總造價: 元。大 寫: 。第六條:合同工期:自 年 月 日至 年 月 日止,共 日歷天。第七條:物資供應(yīng):本工程所需材料及設(shè)備,由乙方根據(jù)設(shè)計要求和國家規(guī)定質(zhì)量標準供應(yīng),并附出廠合格證或材質(zhì)證明。工程所需的所有設(shè)備、主要及輔助材料均應(yīng)提前以書面形式報甲方確認方可進場,未經(jīng)甲方確認的設(shè)備、材料視為不合格材料。如因所供設(shè)備、材料驗收不合格而造成的損失,由乙方承擔(dān)。
初讀古詩,整體感知?! ?.請同學(xué)們用自己喜歡的方式讀古詩《四時田園雜興》(其三十一)。要求借助拼音學(xué)會生字,把古詩讀正確,讀通順。 2.指名多個學(xué)生朗讀古詩,師生評議,糾正讀得不準確的字音。尤其注意讀準“晝、耘”的讀音。指導(dǎo)讀準多音字“供”([ gōng ]作動詞時,準備著東西給需要的人應(yīng)用:供應(yīng)、供給(jǐ)、供求、供需、供銷、提供、供不應(yīng)求。[ góng ]奉獻:供養(yǎng)、供獻、供奉、供佛、供職;祭祀用的東西:供桌、供品、供果、上供;被審問時在法庭上述說事實:招供、口供、供狀、供認、供詞。)在詩中讀四聲?! ?.把古詩反復(fù)多讀幾遍,通過查字典、問同學(xué)、問老師等方式,結(jié)合課文注釋,理解詩句中詞語的意思,用自己的話說說這首詩大體寫了什么。記下不理解的地方和不明白的問題。 4.學(xué)生自愿舉手發(fā)言,其他同學(xué)進行評議,也可以做補充發(fā)言。全班交流,教師相機引導(dǎo)并小結(jié)。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。