方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進行解答.
首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個別學(xué)生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關(guān)系式加以計算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時,運用直角三角形有關(guān)知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標訓(xùn)練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,從而有效地增強了學(xué)生對角以及角平分線的性質(zhì)的感性認識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運用上還存在問題,需要在今后的教學(xué)與作業(yè)中進一步的加強鞏固和訓(xùn)練
方法總結(jié):在等腰三角形有關(guān)計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計1.等腰三角形的性質(zhì):等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強了學(xué)生的感性認識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進一步鞏固和提高
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值。☆ 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關(guān)系,難點是應(yīng)用所學(xué)知識靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強調(diào),借助多媒體加以突出.
第二節(jié):突出天上“美麗的街市”。①讀第一句,語調(diào)要輕緩柔美,“我想”要稍稍拖長,重讀“縹緲”和“空中”,表示強調(diào),仿佛沉浸在離奇美妙的幻想之中。②第二句是詩人美好的愿望,“定然”和“有”要讀得鏗鏘有力,然后提高語調(diào),加大音量,熱烈地吟誦“美麗——的(輕聲)——街市”。③第三句既是進一步的想象,又是具體的描述,可降低音量,放慢速度,繪聲繪色地讀。④第四句是對天河的驚嘆和贊美。讀時語氣要肯定,表示確信無疑,重讀“沒有”,而用清亮、柔和的拖音讀“珍奇”二字,以激起人們對美麗、奇妙的天街的無限向往。第三節(jié):突出天河中的牛郎織女。①第一句,“你看”后作較長的停頓,以表示詩人的遐想和提醒人們的注意。讀“那淺淺的天河”時重音放在“天河”上,“淺淺”二字則延長字音,放慢速度,以強調(diào)“天河”之水清亮可鑒。②第二句,應(yīng)用一種暢想、舒緩的語氣讀,讀“定然”時,音量要稍大,以增強對幻想的確信。③第三句,在輕輕讀過“那隔著河的”之后,要把“牛郎織女”按兩個音步的節(jié)奏讀得格外清楚、響亮。
[疑難探究]風(fēng)度、優(yōu)雅與教養(yǎng)有怎樣的關(guān)系?在社會交往中,一個人的談吐是否得體,舉止是否有度,怎樣打扮才合適,綜合決定一個人是否有風(fēng)度,這也是教養(yǎng)的具體體現(xiàn)。有些人錯誤地認為優(yōu)雅風(fēng)度就是矯揉造作、忸怩作態(tài)和附庸風(fēng)雅,作者認為這是因為這些人并沒有理解風(fēng)度和優(yōu)雅的真正內(nèi)涵——那就是“不應(yīng)該妨礙他人的生活,要讓大家都有良好的自我感覺”,在許多場合要注重禮儀,行為得當,“動作舉止、衣裝服飾、走路的步態(tài),一切都要有分寸,力求優(yōu)雅”。優(yōu)雅的本質(zhì)是“社會共享的”,而不僅僅是“徒有其表的舉止”。作者認為,“敬重社會,珍惜大自然,甚至珍惜動物,珍惜花草樹木,珍惜當?shù)氐拿利愶L(fēng)光,珍惜你居住地的歷史,等等”,以敬重的態(tài)度對待他人、環(huán)境,再加以得體的言行舉止和隨機應(yīng)變的智慧,一個人就能夠成為有風(fēng)度而又優(yōu)雅的人。簡而言之,風(fēng)度和優(yōu)雅的底色就是教養(yǎng),是心靈世界真善美的折射。文章就此展開的論述層層推進,解釋了風(fēng)度和優(yōu)雅源于教養(yǎng),教養(yǎng)的核心就是敬重、珍惜和愛,做有教養(yǎng)的人應(yīng)是我們追求的目標??傊甜B(yǎng)修之于內(nèi),風(fēng)度形之于外。
5. 作業(yè): 作業(yè)我同樣選取不同題型的五個計算題,目的是想查看學(xué)生學(xué)的效果如何,是否對哪類題型還留有疑問。 6. 自我評價: 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學(xué)的知識穿插在學(xué)與練當中,充分地利用了課堂有限的時間,并且能讓學(xué)生邊學(xué)邊練,及時鞏固。 當然這堂課也有很多不足之處,我覺得自己對于課堂上學(xué)生做練習(xí)時出現(xiàn)的一些小問題處理還沒有能夠處理得很好,我應(yīng)該吸取經(jīng)驗教訓(xùn),再以后的教學(xué)中加以改進。 另外對于多個有理數(shù)相乘時的符號問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習(xí)中再做些補充,讓學(xué)生加深理解。從中我也得到一個教訓(xùn),再以后的教學(xué)工作中,我還應(yīng)該多學(xué)習(xí)教學(xué)方法,多思考如何歸納知識點,才能更好地幫學(xué)生形成一個系統(tǒng)的知識系統(tǒng)!
一、舊知回顧1、有理數(shù)的加法法則:(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。(2)絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。(3)互為相反數(shù)的兩數(shù)相加得零。(4)一個數(shù)與零相加,仍得這個數(shù)。注意:一個有理數(shù)由符號和絕對值兩部分組成,進行加法運算時,應(yīng)注意確定和的符號和絕對值.
說明:此處進行的是一次嘗試應(yīng)用乘方運算來解決開頭的問題,互相呼應(yīng),以體現(xiàn)整節(jié)課的完整性,把學(xué)生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對折56次后有多厚?試驗一下你能折這么厚嗎?說明:這個探索實際上仍是對學(xué)生應(yīng)用能力的一個檢查,紙對折56次,用什么運算來計算比較方便,另外計算過程中可使用計算器,進一步加深對乘方意義的理解(五)作業(yè)P56頁1、2說明:這兩個習(xí)題是對課本上例題的簡單重復(fù)和模仿,通過本節(jié)課的學(xué)習(xí),多數(shù)學(xué)生應(yīng)該可以較輕松地完成??傊谡麄€教學(xué)設(shè)計中,我始終以學(xué)生為課堂主體,讓他們積極參與到教學(xué)中來,不斷從舊知識中獲得新的認識,通過不斷進行聯(lián)系比較,讓學(xué)生主動自覺地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進而優(yōu)化了整個教學(xué)。
一、教材分析(一)教材的地位和作用:本節(jié)課是北師大七年級(上)義務(wù)教育課程標準實驗教材第2章第6節(jié)第一課時的內(nèi)容。它是學(xué)生在已經(jīng)掌握有理數(shù)加法、減法、乘法、除法、乘方以后進行學(xué)習(xí)的。它是建立在有理數(shù)的有關(guān)概念和各種運算的意義及法則的基礎(chǔ)上進行的綜合性運算。它是本章的重點之一,是以上各種運算的繼續(xù)和發(fā)展,對學(xué)生運算能力和數(shù)學(xué)學(xué)習(xí)能力的培養(yǎng),有著十分重要的意義,同時也是初中數(shù)學(xué)運算的重要內(nèi)容之一,是后續(xù)學(xué)習(xí)的基礎(chǔ)。(二)教學(xué)目標的確立:參照義務(wù)教育階段《數(shù)學(xué)課程標準》的要求,確定本節(jié)課的教學(xué)目標如下:1、知識技能目標:(1)掌握有理數(shù)的混合運算法則及運算順序。(2)熟練的進行有理數(shù)的混合運算。2、能力目標:培養(yǎng)學(xué)生的觀察能力和運算能力。3、情感與態(tài)度目標:(1)培養(yǎng)學(xué)生在計算前認真審題,確定運算順序,計算中按步驟審慎進行,并養(yǎng)成驗算的良好的學(xué)習(xí)習(xí)慣。
五、兩點說明。(一)、板書設(shè)計這節(jié)課的板書我是這樣設(shè)計的,在黑板的正上方中間處寫明課題,然后把板書分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學(xué)生把文字語言轉(zhuǎn)化成符號語言的能力,板書中只出現(xiàn)兩種法則的符號表示,從而加深他們對法則的理解,板書右邊是學(xué)生的板演,以便于比較他們做題中出現(xiàn)的問題。板書下方是課堂小結(jié),重點寫出:有理數(shù)的除法可以轉(zhuǎn)化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學(xué)思想方法。有理數(shù)的除法板演練習(xí):有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結(jié):有理數(shù)的除法 有理數(shù)的乘法轉(zhuǎn)化(二)、時間分配:教學(xué)過程中的八個環(huán)節(jié)所需的時間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。
在答案的匯總過程中,要肯定學(xué)生的探索,愛護學(xué)生的學(xué)習(xí)興趣和探索欲.讓學(xué)生作課堂的主人,陳述自己的結(jié)果.對學(xué)生的不完整或不準確回答,教師適當延遲評價;要鼓勵學(xué)生創(chuàng)造性思維,教師要及時抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵,是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑.預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類歸納,探索規(guī)律:① 從加數(shù)的不同符號情況(可遇見情況:正數(shù)+正數(shù);負數(shù)+負數(shù);正數(shù)+負數(shù);數(shù)+0)② 從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))③ 從有理數(shù)加法法則的分類(同號兩數(shù)相加;異號兩數(shù)相加;同0相加)④ 從向量的迭加性方面(加數(shù)的絕對值相加;加數(shù)的絕對值相減)⑤ 從和的符號確定方面(同號兩數(shù)相加符號的確定;異號兩數(shù)相加符號的確定)教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏.
5、總結(jié)學(xué)生解題過程中存在的問題,并指導(dǎo)并糾正、分析根本原因。6、通過演示法給學(xué)生演示完整、詳細和規(guī)范的解題過程。7、總結(jié)有理數(shù)的運算順序和方法。先讓學(xué)生自己總結(jié)運算順序,培養(yǎng)學(xué)生自己思考的能力,然后教師進行糾正。等這個過程結(jié)束之后,再給出完整的運算順序和方法。8、出示練習(xí)題,鞏固所學(xué)知識,教師及時指正。9、最后布置課后作業(yè)題。四、教學(xué)評價本節(jié)課我注重體現(xiàn)“以教師為主導(dǎo)、學(xué)生為主體、以學(xué)生發(fā)展為本的教學(xué)思想”。1、通過具體的題目引入,讓學(xué)生先以自己的知識體系解決問題,在這過程中發(fā)現(xiàn)問題、歸納總結(jié)原因,并予以解決。一方面復(fù)習(xí)前面所學(xué)的基本運算,另一方面完善學(xué)生的知識體系。2、培養(yǎng)學(xué)生自主學(xué)習(xí)與探究的能力、分析與解決問題的能力。
“數(shù)的運算”是“數(shù)與代數(shù)”學(xué)習(xí)領(lǐng)域的重要內(nèi)容,減法是其中的一種基本運算.本課的學(xué)習(xí)遠接小學(xué)階段關(guān)于整數(shù)、分數(shù)(包括小數(shù))的減法運算,近承第四節(jié)有理數(shù)的加法運算.通過對有理數(shù)的減法運算的學(xué)習(xí),學(xué)生將對減法運算有進一步的認識和理解,為后繼諸如實數(shù)、復(fù)數(shù)的減法運算的學(xué)習(xí)奠定了堅實的基礎(chǔ).鑒于以上對教學(xué)內(nèi)容在教材體系中的位置及地位的認識和理解,確定本節(jié)課的教學(xué)目標如下:1、知識目標:經(jīng)歷探索有理數(shù)的減法法則的過程,理解有理數(shù)的減法法則,并能熟練運用法則進行有理數(shù)的減法運算.2、能力目標:經(jīng)歷由特例歸納出一般規(guī)律的過程,培養(yǎng)學(xué)生的抽象概括能力及表達能力;通過減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會轉(zhuǎn)化、化歸的數(shù)學(xué)思想.3、情感目標: