提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版新課標小學數學一年級上冊認識鐘表教案

  • 北師大初中七年級數學上冊利用移項與合并同類項解一元一次方程教案1

    北師大初中七年級數學上冊利用移項與合并同類項解一元一次方程教案1

    (3)移項得-4x=4+8,合并同類項得-4x=12,系數化成1得x=-3;(4)移項得1.3x+0.5x=0.7+6.5,合并同類項得1.8x=7.2,系數化成1得x=4.方法總結:將所有含未知數的項移到方程的左邊,常數項移到方程的右邊,然后合并同類項,最后將未知數的系數化為1.特別注意移項要變號.探究點三:列一元一次方程解應用題把一批圖書分給七年級某班的同學閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個班有多少學生?解析:根據實際書的數量可得相應的等量關系:3×學生數量+20=4×學生數量-25,把相關數值代入即可求解.解:設這個班有x個學生,根據題意得3x+20=4x-25,移項得3x-4x=-25-20,合并同類項得-x=-45,系數化成1得x=45.答:這個班有45人.方法總結:列方程解應用題時,應抓住題目中的“相等”、“誰比誰多多少”等表示數量關系的詞語,以便從中找出合適的等量關系列方程.

  • 北師大初中數學九年級上冊幾何問題及數字問題與一元二次方程2教案

    北師大初中數學九年級上冊幾何問題及數字問題與一元二次方程2教案

    三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止;點Q以2cm/s的速度向點D移動。經過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關緝私巡邏艇在東海海域執(zhí)行巡邏任務時,發(fā)現在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?

  • 北師大初中數學九年級上冊幾何問題及數字問題與一元二次方程1教案

    北師大初中數學九年級上冊幾何問題及數字問題與一元二次方程1教案

    解:設個位數字為x,則十位數字為14-x,兩數字之積為x(14-x),兩個數字交換位置后的新兩位數為10x+(14-x).根據題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數上的數字不可能是負數,所以x=-3應舍去.當x=8時,14-x=6.所以這個兩位數是68.方法總結:(1)數字排列問題常采用間接設未知數的方法求解.(2)注意數字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數字不能為0,而其他如分數、負數根不符合實際意義,必須舍去.三、板書設計幾何問題及數字問題幾何問題面積問題動點問題數字問題經歷分析具體問題中的數量關系,建立方程模型解決問題的過程,認識方程模型的重要性.通過列方程解應用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經歷探索過程,培養(yǎng)合作學習的意識.體會數學與實際生活的聯系,進一步感知方程的應用價值.

  • 北師大初中數學九年級上冊用因式分解法求解一元二次方程2教案

    北師大初中數學九年級上冊用因式分解法求解一元二次方程2教案

    【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現了一種“降次”思想、“轉化”思想,并了解這種轉化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北師大初中數學八年級上冊應用二元一次方程組——增收節(jié)支1教案

    北師大初中數學八年級上冊應用二元一次方程組——增收節(jié)支1教案

    因為x3表示手機部數,只能為正整數,所以這種情況不合題意,應舍去.綜上所述,商場共有兩種進貨方案.方案1:購甲型號手機30部,乙型號手機10部;方案2:購甲型號手機20部,丙型號手機20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進貨方案獲利最多.方法總結:仔細讀題,找出相等關系.當用含未知數的式子表示相等關系的兩邊時,要注意不同型號的手機數量和單價要對應.三、板書設計增收節(jié)支問題分析解決列二元一次方程,組解決實際問題)增長率問題利潤問題利用圖表分析等量關系方案選擇通過問題的解決使學生進一步認識數學與現實世界的密切聯系,樂于接觸生活環(huán)境中的數學信息,愿意參與數學話題的研討,從中懂得數學的價值,逐步形成運用數學的意識;并且通過對問題的解決,培養(yǎng)學生合理優(yōu)化的經濟意識,增強他們的節(jié)約和有效合理利用資源的意識.

  • 北師大初中數學八年級上冊應用二元一次方程組——增收節(jié)支2教案

    北師大初中數學八年級上冊應用二元一次方程組——增收節(jié)支2教案

    答:書包單價92元,隨身聽單價360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價92元,隨身聽單價360元。2)在人民商場購買隨聲聽與書包各一樣需花費現金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂??上然ìF金360元購買隨身聽,再利用得到的90元返券,加上2元現金購買書包,共花現金360+2=362(元)。因為362<400,所以也可以選擇在家樂福購買。因為362>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學習反思;(5分鐘,學生思考回答,不足的地方教師補充和強調。)

  • 北師大初中數學九年級上冊用因式分解法求解一元二次方程1教案

    北師大初中數學九年級上冊用因式分解法求解一元二次方程1教案

    探究點二:選用適當的方法解一元二次方程用適當的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數根.方法總結:解一元二次方程時,若沒有具體的要求,應盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數根.沒有特殊要求時,一般不用配方法.

  • 北師大初中數學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    北師大初中數學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經核算,這24套演出服的成本正好是原定生產這批演出服的利潤.這批演出服共生產了多少套?8、某商店經營T恤衫,已知成批購進時單價是2.5元。根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

  • 北師大初中數學九年級上冊利用一元二次方程解決面積問題1教案

    北師大初中數學九年級上冊利用一元二次方程解決面積問題1教案

    ∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結:對于生活中的應用題,首先要全面理解題意,然后根據實際問題的要求,確定用哪些數學知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設計列一元二次方程解應用題的一般步驟可以歸結為“審,設,列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關系;(2)設:設未知數,有直接和間接兩種設法,因題而異;(3)列:列方程,一般先找出能夠表達應用題全部含義的一個相等關系,列代數式表示相等關系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據題意,選擇合理的答案.經歷列方程解決實際問題的過程,體會一元二次方程是刻畫現實世界中數量關系的一個有效數學模型.通過學生創(chuàng)設解決問題的方案,增強學生的數學應用意識和能力.

  • 北師大初中數學九年級上冊用配方法求解簡單的一元二次方程2教案

    北師大初中數學九年級上冊用配方法求解簡單的一元二次方程2教案

    二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當的數,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結配方法嗎?課本37頁隨堂練習課時作業(yè):

  • 北師大初中數學九年級上冊用因式分解法求解一元二次方程2教案

    北師大初中數學九年級上冊用因式分解法求解一元二次方程2教案

    【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現了一種“降次”思想、“轉化”思想,并了解這種轉化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北師大初中數學九年級上冊利用一元二次方程解決面積問題2教案

    北師大初中數學九年級上冊利用一元二次方程解決面積問題2教案

    四.知識梳理談談用一元二次方程解決例1實際問題的方法。五、目標檢測設計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設計意圖】發(fā)現幾何圖形中隱蔽的相等關系.2.鎮(zhèn)江)學校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設計一個長方形花圃,使它的面積比學校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設計意圖】考查學生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

  • 北師大初中數學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    北師大初中數學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經核算,這24套演出服的成本正好是原定生產這批演出服的利潤.這批演出服共生產了多少套?8、某商店經營T恤衫,已知成批購進時單價是2.5元。根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

  • 北師大初中數學九年級上冊用配方法求解簡單的一元二次方程1教案

    北師大初中數學九年級上冊用配方法求解簡單的一元二次方程1教案

    探究點二:用配方法解二次項系數為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結:用配方法解一元二次方程時,應按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數一半的平方.三、板書設計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數為1的一元二次方程的一般步驟:(1)移項,把方程的常數項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

  • 北師大初中數學九年級上冊用配方法求解簡單的一元二次方程2教案

    北師大初中數學九年級上冊用配方法求解簡單的一元二次方程2教案

    (1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當的數,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結配方法嗎?課本37頁隨堂練習課時作業(yè):

  • 北師大初中七年級數學上冊應用一元一次方程——追趕小明教案1

    北師大初中七年級數學上冊應用一元一次方程——追趕小明教案1

    解:(1)設x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結:環(huán)形問題中的相等關系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學過程中,通過對開放性問題的探討與交流,體驗生活中數學的應用與價值,感受數學與人類生活的密切聯系,激發(fā)學生學習數學的興趣,培養(yǎng)學生的創(chuàng)新意識、團隊精神和克服困難的勇氣.

  • 北師大初中七年級數學上冊應用一元一次方程——追趕小明教案2

    北師大初中七年級數學上冊應用一元一次方程——追趕小明教案2

    由于題目較簡單,所以學生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結:活動內容:學生歸納總結本節(jié)課所學知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調本課的重點內容是要學會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關系.引導學生自己對所學知識和思想方法進行歸納和總結,從而形成自己對數學知識的理解和解決問題的方法策略.

  • 小學數學人教版二年級下冊《數學廣角——推理》說課稿

    小學數學人教版二年級下冊《數學廣角——推理》說課稿

    二、 說學情:二年級的學生由于他們的年齡特點,具有較高的學習熱情,喜歡做游戲,喜歡與他人合作,同時也具備了一些簡單的邏輯推理能力?;谝陨锨闆r,本節(jié)課將以游戲的形式為主,讓學生通過生動有趣、形式多樣的猜測、推理游戲,使學生在具體的情境中感受簡單的推理過程,獲得一些簡單的推理經驗,提高學生的分析能力與合作能力。三、說教學目標:知識與技能目標:通過觀察與形式多樣的猜測活動,使學生經歷簡單的推理過程,初步獲得一些推理經驗。過程與方法目標:通過借助連線、列表等方式整理信息,并按一定的方法進行推理。態(tài)度與價值觀目標:在簡單的推理過程中,使學生感受推理在生后中的廣泛應用,初步培養(yǎng)學生有序地、全面地思考問題的意識。培養(yǎng)學生初步的觀察、分析、推理能力。四、說教學重點:經歷簡單的推理過程,初步獲得一些簡單的推理經驗。五、說教學難點:初步培養(yǎng)學生有序地、全面地思考問題的能力。

  • 《分數的初步認識》說課稿_分數的初步認識一等獎說課稿3篇

    《分數的初步認識》說課稿_分數的初步認識一等獎說課稿3篇

    一、教材分析?  本節(jié)課是三年級第六單元第一節(jié)的教學內容,主要講了明白什么是分數,初步理解分數的意義,能正確地認、讀、寫簡單的的分數等知識。這部分內容是在學生們掌握了一些整數知識的基礎上來學習的,它為進一步學習比較分數的大小和分數的加減運算有重要的鋪墊作用。?  三年級的學生活潑好動、思維敏捷、善于學習,愛好展示,善于發(fā)言,課堂根據學生的年齡特點設計教學活動?! 《⒔虒W目標(針對新課標的要求與教材內容,我制定了如下的教學目標)?????  1、讓學生理解分數的意義,能正確地認、讀、寫簡單的分數。?????  2、能熟練地根據圖表表示分數,根據分數涂寫表格。?  3、培養(yǎng)學生的思維能力和運用數學知識解決實際問題的能力,從而培養(yǎng)學生學習數學的興趣。?????  三、教學重點難點 對教學目標和教材內容,我確定了教學重點和難點)???正確地認、讀、寫簡單的分數以及初步認識分數的含義是重點。???合作探究理解分數的意義是難點。

  • 大班科學《認識彈性朋友》說課稿

    大班科學《認識彈性朋友》說課稿

    《幼兒園教育指導綱要》明確指出:幼兒的科學教育是科學啟蒙教育,重在激發(fā)幼兒的認識興趣和探究欲望。教師要盡量創(chuàng)造條件讓幼兒實際參加探究活動,使他們感受科學探究的過程和方法,體驗發(fā)現的樂趣。因此,我確定本活動的教育目標是:1、激發(fā)幼兒探索科學現象的興趣,培養(yǎng)幼兒創(chuàng)造性思維和對科學的探索精神。2、讓幼兒探索有彈性的物體,獲取有關彈性的科學經驗,了解有關彈性的特征和在人們生活中的應用。科學教育蘊含的價值主要在于使幼兒親歷探究解決問題的過程,從而學會學習,學會生活,學會應用,所以我把活動的重點和難點確定為:了解彈性物體在人們生活中的應用。主要表現為引導幼兒找出周圍常見的有彈性的物體,認識它的使用價值和應用的廣泛性。二、說教學方法托爾斯泰說過:“成功的教學需要的不是強制,而是激發(fā)學生的學習興趣?!毙戮V要也指出:“教師要盡量創(chuàng)造條件讓兒童實際參加探究活動”,“親身經歷真實的研究過程”,要讓幼兒真正做科學。根據布魯納的發(fā)現學習理論,我運用嘗試教學法,并融進提問法、記錄法、發(fā)現法等教法誘發(fā)幼兒探究的興趣,創(chuàng)設能引導幼兒主動參與的活動環(huán)境,激發(fā)幼兒的學習積極性,盡量讓每一個幼兒都能得到充分發(fā)展。說活動準備:因為大班幼兒已經具備了一定的比較分析能力,所以我準備了許多有彈性的物體和沒有彈性的物體,讓幼兒在操作實踐中進行比較,獲得進一步的感知,同時我還準備了大屏幕、投影儀,以備幼兒展示自己的記錄結果,讓他們獲得成功的體驗。三、說學法指導科學教育的目標強調幼兒能運用各種感官動手動腦、探究問題。作為幼兒學習活動的支持者、合作者、引導者,我為幼兒提供大量的豐富的操作材料,創(chuàng)設一種寬松融洽的氛圍,引導幼兒主動積極的參與活動,直接操作、反復體驗,主動探索,通過玩一玩、說一說、記一記、想一想、找一找、做一做等多種形式,讓幼兒真正體驗和了解彈性的特征,并激發(fā)幼兒學科學的濃厚興趣。

上一頁123...606162636465666768697071下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!