2.法解二元一次方程組,是提升學生求解二元一次方程的基本技能課,在例題的設置上充分體現(xiàn)化歸思想.2.在學習二元一次方程組的解法中,關鍵是領會其本質(zhì)思想——消元,體會“化未知為已知”的化歸思想.因而在教學過程中教師通過對問題的創(chuàng)設,鼓勵學生去觀察方程的特點,在過手訓練中提高學生的解答正確率和表達規(guī)范性,提升學生學會數(shù)學的信心,激發(fā)學習數(shù)學的興趣.3.通過精心設計的問題,引導學生在已有知識的基礎上,自己比較、分析得出二元一次方程組的解法,在鞏固訓練活動中,加深學生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學生深刻的體會到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學生掌握知識、技能和方法,提高學習效率,而且還加深了對數(shù)學中通性和通法的認識,體會學習數(shù)學和研究數(shù)學的規(guī)律,提升數(shù)學思維能力.
解析:本題是要求兩個未知數(shù),即3和4的權.所以應把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結(jié):利用平均數(shù)的公式解題時,要弄清數(shù)據(jù)及相應的權,避免出錯.三、板書設計平均數(shù)算術平均數(shù):x=1n(x1+x2+…+xn)加權平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術平均數(shù)和加權平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關平均數(shù)問題的解決,提升學生的數(shù)學應用能力.通過解決實際問題,體會數(shù)學與社會生活的密切聯(lián)系,了解數(shù)學的價值,增進學生對數(shù)學的理解和增加學好數(shù)學的信心.
探究點三:函數(shù)的圖象洗衣機在洗滌衣服時,每漿洗一遍都經(jīng)歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內(nèi)無水).在這三個過程中,洗衣機內(nèi)的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關系的圖象大致為()解析:∵洗衣機工作前洗衣機內(nèi)無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結(jié):本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設計函數(shù)定義:自變量、因變量、常量函數(shù)的關系式三種表示方法函數(shù)值函數(shù)的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數(shù)學活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數(shù)概念的理解.
1.細講概念、強化訓練要想讓學生正確、牢固地樹立起算術平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學,對提高學生的思維水平是很有必要的.概念教學過程中要做到:講清概念,加強訓練,逐步深化.“講清概念”就是通過具體實例揭露算術平方根的本質(zhì)特征.算術平方根的本質(zhì)特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術平方根也必須是正的.當然零的算術平方根是零.
第一環(huán)節(jié)感受生活中的情境,導入新課通過若干圖片,引導學生感受生活中常常需要確定位置.導入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個點的位置需要幾個數(shù)據(jù)呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數(shù)軸上找到A點和B點的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個點的位置一般需要一個數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個點的位置呢?請同學們根據(jù)生活中確定位置的實例,請談談自己的看法.2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個座位一般需要幾個數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號數(shù)”來確定位置. Ⅱ. 學有所用(1) 你能用兩個數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?
本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內(nèi)容通過學生的生活經(jīng)驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學是鍛煉思維的體操”,數(shù)學教師應通過一系列數(shù)學活動開啟學生的思維,因此對新數(shù)的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數(shù)學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學生覺得新數(shù)并不抽象.(三)強化知識間聯(lián)系,注意糾錯既然稱之為“新數(shù)”,那它當然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學習“新數(shù)”,即第二課時教學埋下了伏筆,在教學中,要著重強調(diào)這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學奠好基.
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學生也很容易掌握。但在一些綜合運用的題目中,學生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學生的整體觀念,靈活運用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎不好的學生需要手把手的教,因此,應該引導學生總結(jié)多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結(jié):用不等式表示數(shù)量關系時,要找準題中表示不等關系的兩個量,并用代數(shù)式表示;正確理解題中的關鍵詞,如負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設計1.不等式的概念2.列不等式(1)找準題目中不等關系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關系.要注意常用的關鍵詞的含義:負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關鍵詞中如果含有“不”“非”等文字,一般應包括“=”,這也是學生容易出錯的地方.
【類型二】 根據(jù)數(shù)軸求不等式的解關于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關于a的方程是解題關鍵.三、板書設計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學習不等式的解和解集,利用數(shù)軸表示不等式的解,讓學生體會到數(shù)形結(jié)合的思想的應用,能夠直觀的理解不等式的解和解集的概念,為接下來的學習打下基礎.在課堂教學中,要始終以學生為主體,以引導的方式鼓勵學生自己探究未知,提高學生的自我學習能力.
答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.三、板書設計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點:能夠運用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運用平方差公式因式分解,首先應注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通??紤]應用平方差公式;如果多項式中有公因式可提,應先提取公因式,而且還要“提”得徹底,最后應注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應為黃金比,此題應根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設計黃金分割定義:一般地,點C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點 C黃金分割黃金分割點:一條線段有兩個黃金分割點黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點的探究過程,通過問題情境的創(chuàng)設和解決過程,體會黃金分割的文化價值,在應用中進一步理解相關內(nèi)容,在實際操作、思考、交流等過程中增強學生的實踐意識和自信心.感受數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增進數(shù)學學習的興趣.
解:設另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.
探究點三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書設計1.中心對稱如果把一個圖形繞著某一點旋轉(zhuǎn)180°,它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調(diào)學生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.
(2)如果對應著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設兩個矩形相似,不妨設小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因為矩形的四個角均是直角,所以在有關矩形相似的問題中,只需看對應邊是否成比例,若成比例,則相似,否則不相似.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
[教學目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學過程] 一、情景創(chuàng)設1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。