根據(jù)題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結(jié):從扇形統(tǒng)計圖中獲取正確的信息是解題的關(guān)鍵.語文老師對班上學(xué)生的課外閱讀情況做了調(diào)查,并請數(shù)學(xué)老師制作了如圖所示的統(tǒng)計圖.(1)哪種書籍最受歡迎?(2)哪兩種書籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個百分比如何得到?所有的百分比之和是多少?解:(1)科幻書籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書籍和武俠書籍受歡迎程度差不多,可從圖中扇形大小或圖中所標百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書籍的人數(shù)占全班人數(shù)的百分比.(4)用最喜歡某種書籍的人數(shù)比全班的總?cè)藬?shù)即可得各個百分比,所有的百分比之和為1.方法總結(jié):由扇形統(tǒng)計圖獲取信息時,一定要明確各個項目和它們所占圓面的百分比.
分別算出2008年比2007年各季度增產(chǎn)的百分數(shù)和合計數(shù),再制成統(tǒng)計表.分析:根據(jù)題目要求,要算出各季度增產(chǎn)的百分數(shù),我們只要根據(jù)2008年與2007年各個季度的原始數(shù)據(jù),運用“求一個數(shù)是另一個數(shù)的百分之幾”的方法就可以算出.算出了各個季度增產(chǎn)的百分數(shù),根據(jù)題意制統(tǒng)計表時,既要按照季度分類,又要反映出年份的類別,所以在確定表頭時可分為3部分:年份、臺數(shù)、季度,年份又分為2007年產(chǎn)量、2008年產(chǎn)量、2008年比2007年增產(chǎn)的百分數(shù).2、田力化肥廠今年第一季度生產(chǎn)情況如下:元月份計劃生產(chǎn)1500噸,實際生產(chǎn)1620噸;二月計劃生產(chǎn)1600噸,實際生產(chǎn)1680噸;三月份計劃生產(chǎn)1640噸,實際生產(chǎn)1720噸,根據(jù)上面的數(shù)據(jù),算出各月完成計劃的百分數(shù),并制成統(tǒng)計表.(1)制作含有百分數(shù)的統(tǒng)計表時,百分數(shù)這一欄一定要寫清楚是誰占誰的百分之幾,并按“求一個數(shù)是另一個數(shù)的百分之幾”的解題方法正確算出對應(yīng)百分數(shù)”
【新知識點】認識扇形統(tǒng)計圖統(tǒng)計填寫扇形統(tǒng)計圖根據(jù)扇形統(tǒng)計圖所提供的數(shù)據(jù)回答問題【單元教學(xué)目標】1,認識扇形統(tǒng)計圖,了解扇形統(tǒng)計圖的特點.2,能夠看懂并會填扇形統(tǒng)計圖.3,會根據(jù)扇形統(tǒng)計圖所提供的數(shù)據(jù)回答一些簡單的問題.4,進一步了解統(tǒng)計在實際生活中的地位和作用.5,通過對相關(guān)素材的整理和分析,使學(xué)生受到一定的思想教育.【單元教學(xué)重難點】重點:學(xué)生掌握扇形統(tǒng)計圖的特點和作用.難點:在學(xué)習(xí)中體會各種統(tǒng)計圖的不同特點.【教學(xué)建議】學(xué)生已經(jīng)系統(tǒng)地學(xué)習(xí)過有關(guān)條形統(tǒng)計圖和折線統(tǒng)計圖的知識,也初步認識了扇形,而且也學(xué)習(xí)了有關(guān)百分數(shù)的知識,所有這些都為學(xué)校繼續(xù)學(xué)習(xí)統(tǒng)計圖的最后一部分內(nèi)容——扇形統(tǒng)計圖打下了良好的基礎(chǔ).【課時安排】
【活動準備】 1.創(chuàng)設(shè)“鐘表展覽館”的教學(xué)環(huán)境。 2.人手一只可以撥動的小時鐘。 3.反映幼兒一日生活內(nèi)容的圖片(起床、上學(xué)、午飯、午睡等),時鐘演變過程圖片。 4.可以用來自制鐘面的有關(guān)材料(如長短針、1~12的數(shù)字、各種形狀和造型的硬板紙或吹塑紙若干)?!净顒舆^程】一、創(chuàng)設(shè)嘗試情境,激發(fā)幼兒嘗試欲望 邊聽“在鐘表店”里的音樂,邊把幼兒帶進“鐘表展覽館”,引導(dǎo)幼兒欣賞各種各樣的鐘表,激發(fā)幼兒學(xué)習(xí)的興趣。 師:請小朋友仔細看看、找找、比比這些鐘表有什么地方是相同的?再想想,工人叔叔和阿姨為什么要設(shè)計、制造這些鐘表? 二、觀察活動 通過觀察活動比較鐘表上時針、分針的不同,認識12個數(shù)字以及數(shù)字的排列位置。 提問: 1.每只鐘面上都有什么?(出示3只不同形狀的時鐘,幼兒找出鐘面上都有兩根針和1~12的數(shù)字) 2.比比看,兩根針什么地方不一樣?(長短、粗細之分)它們的名稱叫什么?(了解時針、分針的名稱) 3.鐘面上的數(shù)字排列位置是怎樣的?(認識典型的幾個數(shù)字位置12、9、3、6)
《綱要》明確指出:教育內(nèi)容應(yīng)“貼近幼兒的生活來選擇幼兒感興趣的事物和問題,有助于拓展幼兒的經(jīng)驗的視野”,幼兒園數(shù)學(xué)教育不是為純粹的教育而教育,是一種以幼兒生活為特征的教育,這就要求我們要立足幼兒的生活實際,緊密聯(lián)系幼兒的生活來開展教育。像我班小朋友午睡起床,常有孩子把鞋子、襪子拿錯、穿反。根據(jù)小班幼兒年齡特點,我設(shè)計了以鞋子、襪子、鞋墊為活動材料的《找朋友》數(shù)學(xué)活動,引導(dǎo)孩子在原有的生活經(jīng)驗上關(guān)注物體的形狀、大小、顏色的不同,進行配對。在游戲中自然滲透數(shù)學(xué)的概念,達到“玩中學(xué),玩中教”的目的?;顒拥哪繕藢顒悠鹬鴮?dǎo)向性作用,根據(jù)本班幼兒的年齡特點和實際情況,確立了情感、能力等方面的目標.其中有探索認知部分,也有操作部分,具體目標是:1、認識目標:(1)、初步形成“雙”的概念,知道一雙有兩只。(2)、能按鞋子、襪子、鞋墊的外形,顏色,大小等特點進行配對。2、能力目標:發(fā)展幼兒的觀察力、記憶力、創(chuàng)造力和想象力。3、情感目標:體驗與教師、同伴游戲的快樂;初步感受改編兒歌的樂趣,從而激發(fā)幼兒的求知欲。
教學(xué)反思:1、引導(dǎo)學(xué)生體驗抽象除法豎式的過程。學(xué)生在學(xué)習(xí)表內(nèi)乘除法時,利用乘法口訣已經(jīng)能夠在算式上直接寫出得數(shù)。教材安排了“18個蘋果,每盤放6個,可以放幾盤”的“分蘋果”活動,列舉了四種解決這一問題的方法。在此基礎(chǔ)上,引導(dǎo)學(xué)生按照自己的想法來分這些蘋果,進而再由對除法豎式有一定了解的學(xué)生介紹豎式計算,并且把豎式中的每一步所表示的含義和分蘋果的活動緊密聯(lián)系起來。2、在探究中理解除法的試商方法。學(xué)生通過實際操作、觀察比較,培養(yǎng)學(xué)生質(zhì)疑和創(chuàng)新精神,學(xué)會學(xué)習(xí)、積累數(shù)學(xué)活動經(jīng)驗的有意義的學(xué)習(xí)過程。3、不足:這節(jié)課上得不夠生動、活潑。
參與實踐,充分體驗1、直觀感知,初步認識噸讓學(xué)生說說自己的體重,請出4個體重大約25千克的同學(xué)站在一起。算一算4個學(xué)生的體重大約是多少千克。再推算一下40個這樣的同學(xué)大約重多少千克?講述:為了簡便計算1000千克,我們把1000千克規(guī)定為1噸。噸也可以用英文字母“t”表示。2、結(jié)合實際,進一步認識噸我們教室里的桌、椅、書本等,你認為用噸做單位合適嗎?你認為多少張桌子或者椅子合在一起大約重1噸?學(xué)生獨立思考;引導(dǎo)學(xué)生在小組內(nèi)展開討論;小組匯報討論結(jié)果;問:在生活中,你見過哪些物體是用噸做單位的?學(xué)生舉例。講述:計量比較重或大宗物品有多重時,通常用噸做單位。練習(xí):1棵白菜重1千克,( )棵白菜重1噸。 1袋大米重100千克,( )袋大米重1噸。 1頭奶牛重500千克,( )頭奶牛重1噸。 1桶油重200千克,( )桶油重1噸。
教學(xué)目標:1、通過觀察實物,體會到從不同角度觀察物體所看到的形狀可能是不同的。2、會辨認簡單物體從不同角度觀察到的形狀,發(fā)展空間觀念。教學(xué)重點:會辨認簡單物體從不同角度觀察到的形狀。教學(xué)難點:體會到從不同角度觀察到的的形狀可能是不同的,發(fā)展空間觀念。課前準備:實物或圖片等教學(xué)過程:一、出示玩具汽車,學(xué)會觀察物體第一步:1、觀察玩具汽車,學(xué)生分別站在汽車側(cè)面和后面兩個不同的方向觀察。2、分別把玩具汽車的側(cè)面和后面對著全班,讓學(xué)生說一說這是誰看到的?3、小結(jié):不同的位置觀察同一物時,看到的形狀可能是不同的。
知識和技能 1.了解人類活動對生物圈影響的幾個方面的實例。 2.掌握環(huán)境污染的產(chǎn)生及危害。 3.舉例說明人類對生物圈中資源的合理利用。 過程與方法 1.能初步學(xué)會收集資料,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,能夠運用所學(xué)知識、技能分析和解決一些身邊的生物學(xué)問題的能力。 2.培養(yǎng)學(xué)生初步具有近一步獲取課本以外的生物學(xué)信息的能力。 情感、態(tài)度與價值觀 1.讓學(xué)生認識到環(huán)境保護的重要性,能夠以科學(xué)的態(tài)度去認識生命世界,認同人類活動對生物圈的影響,形成環(huán)境保護意識,并使這種意識轉(zhuǎn)變成真正的行動,培養(yǎng)學(xué)生保護環(huán)境的意識,增強愛國主義思想1.認同人類活動對生物圈的影響,形成環(huán)境保護意識 2.做到從實際行動出發(fā)保護環(huán)境1.采取讓學(xué)生收集資料,整理資料,解疑
【學(xué)習(xí)目標】1.知識與技能:知道氧氣的制取及檢驗方法,復(fù)習(xí)鞏固氧氣的相關(guān)性質(zhì)。2.過程與方法:通過“探究能使帶火星木條復(fù)燃所需氧氣的最低體積分數(shù)”的探究性學(xué)習(xí),學(xué)習(xí)科學(xué)探究的基本方法。3.情感態(tài)度與價值觀:提高實驗設(shè)計的能力和合作意識,復(fù)習(xí)鞏固相關(guān)的基本操作,培養(yǎng)學(xué)習(xí)化學(xué)的興趣?!緦W(xué)習(xí)重點】氧氣的實驗室制取操作步驟和性質(zhì)檢驗?!緦W(xué)習(xí)難點】實驗操作過程中的注意事項?!菊n前準備】《精英新課堂》:預(yù)習(xí)學(xué)生用書的“早預(yù)習(xí)先起步”?!睹麕煖y控》:預(yù)習(xí)贈送的《提分寶典》。情景導(dǎo)入 生成問題1.復(fù)習(xí)引入:實驗室用高錳酸鉀制取氧氣的反應(yīng)原理是什么?操作步驟有哪些?2.明確學(xué)習(xí)目標,由學(xué)生對學(xué)習(xí)目標進行解讀。合作探究 生成能力閱讀課本P45~P46的內(nèi)容。提出問題:實驗室加熱高錳酸鉀制取氧氣的實驗中,使用了哪些儀器?哪部分是氣體發(fā)生裝置?哪部分是氣體收集裝置?為什么可用排水法收集氣體?討論交流:結(jié)合化學(xué)實驗基本操作和氧氣的性質(zhì)討論歸納。
一、活動內(nèi)容分析西歐從5世紀末至9世紀歷經(jīng)四個世紀完成了由奴隸制度向封建制度的轉(zhuǎn)變,西歐中世紀即西歐的封建社會,形成了與中國封建社會不同的特點。理解這些特點,將有助于學(xué)生理解西歐在世界上最早進入資本主義社會的原因。盡管神學(xué)世界觀籠罩了西方中世紀,是黑暗的,但是應(yīng)看到,自古代流傳下來的政治思想傳統(tǒng)如平等、自由、民主、法制等思想史都以不同的形式保存下來。歐洲的中世紀表面上看起來是一個陰森森的一千年(五百年到一千五百年),但實際上確實孕育了西方近代文明的重要時期。從探究活動的內(nèi)容上看與第二單元的古代希臘羅馬的政治制度及第三單元近代西方資本主義政治制度的確立與發(fā)展明確相關(guān),有承上啟下的作用。二、活動重點設(shè)計理解西歐封建社會的政治特點及對后世的影響;正確認識基督教文明
4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個不同元素中任選4個元素的排列問題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個?能被5整除的有多少個?(2)這些四位數(shù)中大于6 500的有多少個?解:(1)偶數(shù)的個位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個);能被5整除的數(shù)個位必須是5,故有A_6^3=120(個).(2)最高位上是7時大于6 500,有A_6^3種,最高位上是6時,百位上只能是7或5,故有2×A_5^2種.由分類加法計數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個).
解析:因為減法和除法運算中交換兩個數(shù)的位置對計算結(jié)果有影響,所以屬于組合的有2個.答案:B2.若A_n^2=3C_(n"-" 1)^2,則n的值為( )A.4 B.5 C.6 D.7 解析:因為A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故選C.答案:C 3.若集合A={a1,a2,a3,a4,a5},則集合A的子集中含有4個元素的子集共有 個. 解析:滿足要求的子集中含有4個元素,由集合中元素的無序性,知其子集個數(shù)為C_5^4=5.答案:54.平面內(nèi)有12個點,其中有4個點共線,此外再無任何3點共線,以這些點為頂點,可得多少個不同的三角形?解:(方法一)我們把從共線的4個點中取點的多少作為分類的標準:第1類,共線的4個點中有2個點作為三角形的頂點,共有C_4^2·C_8^1=48(個)不同的三角形;第2類,共線的4個點中有1個點作為三角形的頂點,共有C_4^1·C_8^2=112(個)不同的三角形;第3類,共線的4個點中沒有點作為三角形的頂點,共有C_8^3=56(個)不同的三角形.由分類加法計數(shù)原理,不同的三角形共有48+112+56=216(個).(方法二 間接法)C_12^3-C_4^3=220-4=216(個).
學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)運算性質(zhì),有了這些知識作儲備,教科書通過利用指數(shù)運算性質(zhì),推導(dǎo)對數(shù)的運算性質(zhì),再學(xué)習(xí)利用對數(shù)的運算性質(zhì)化簡求值。課程目標1、通過具體實例引入,推導(dǎo)對數(shù)的運算性質(zhì);2、熟練掌握對數(shù)的運算性質(zhì),學(xué)會化簡,計算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)的運算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學(xué)運算:對數(shù)運算性質(zhì)的應(yīng)用;4.數(shù)學(xué)建模:在熟悉的實際情景中,模仿學(xué)過的數(shù)學(xué)建模過程解決問題.重點:對數(shù)的運算性質(zhì),換底公式,對數(shù)恒等式及其應(yīng)用;難點:正確使用對數(shù)的運算性質(zhì)和換底公式.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數(shù)有哪些性質(zhì)?如 要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進一步觀察.研探.
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個實例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個實例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點:函數(shù)的概念,函數(shù)的三要素。難點:函數(shù)概念及符號y=f(x)的理解。
冪函數(shù)是在繼一次函數(shù)、反比例函數(shù)、二次函數(shù)之后,又學(xué)習(xí)了單調(diào)性、最值、奇偶性的基礎(chǔ)上,借助實例,總結(jié)出冪函數(shù)的概念,再借助圖像研究冪函數(shù)的性質(zhì).課程目標1、理解冪函數(shù)的概念,會畫冪函數(shù)y=x,y=x2,y=x3,y=x-1,y=x 的圖象;2、結(jié)合這幾個冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì);3、通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語言表示函數(shù)冪函數(shù);2.邏輯推理:常見冪函數(shù)的性質(zhì);3.數(shù)學(xué)運算:利用冪函數(shù)的概念求參數(shù);4.數(shù)據(jù)分析:比較冪函數(shù)大??;5.數(shù)學(xué)建模:在具體問題情境中,運用數(shù)形結(jié)合思想,利用冪函數(shù)性質(zhì)、圖像特點解決實際問題。重點:常見冪函數(shù)的概念、圖象和性質(zhì);難點:冪函數(shù)的單調(diào)性及比較兩個冪值的大?。?/p>
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學(xué)必修1第四章第4.3.2節(jié)《對數(shù)的運算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運算性質(zhì),理解它的關(guān)鍵就是通過實例使學(xué)生認識對數(shù)式與指數(shù)式的關(guān)系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實例推導(dǎo)對數(shù)的運算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點的關(guān)鍵是抓住對數(shù)的概念、并讓學(xué)生掌握對數(shù)式與指數(shù)式的互化;通過實例推導(dǎo)對數(shù)的運算性質(zhì),讓學(xué)生準確地運用對數(shù)運算性質(zhì)進行運算,學(xué)會運用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運用于有關(guān)對數(shù)計算。
對數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)的基礎(chǔ)上通過實例總結(jié)歸納對數(shù)的概念,通過對數(shù)的性質(zhì)和恒等式解決一些與對數(shù)有關(guān)的問題.課程目標1、理解對數(shù)的概念以及對數(shù)的基本性質(zhì);2、掌握對數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)的概念;2.邏輯推理:推導(dǎo)對數(shù)性質(zhì);3.數(shù)學(xué)運算:用對數(shù)的基本性質(zhì)與對數(shù)恒等式求值;4.數(shù)學(xué)建模:通過與指數(shù)式的比較,引出對數(shù)定義與性質(zhì).重點:對數(shù)式與指數(shù)式的互化以及對數(shù)性質(zhì);難點:推導(dǎo)對數(shù)性質(zhì).教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入已知中國的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達到18億,20億,30億......”,該如何解決?要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進一步觀察.研探.
探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機變量X的分布列.(1):采用有放回抽樣,隨機變量X服從二項分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨立,此時X服從二項分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機變量X服從超幾何分布.
二項式定理形式上的特點(1)二項展開式有n+1項,而不是n項.(2)二項式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項展開式中某一項的系數(shù)不一定相等.(3)二項展開式中的二項式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項起,次數(shù)由n次逐項減少1次直到0次,同時字母b按升冪排列,次數(shù)由0次逐項增加1次直到n次.1.判斷(正確的打“√”,錯誤的打“×”)(1)(a+b)n展開式中共有n項. ( )(2)在公式中,交換a,b的順序?qū)Ω黜棝]有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項. ( )(4)(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)相同. ( )[解析] (1)× 因為(a+b)n展開式中共有n+1項.(2)× 因為二項式的第k+1項Cknan-kbk和(b+a)n的展開式的第k+1項Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因為Cknan-kbk是(a+b)n展開式中的第k+1項.(4)√ 因為(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√