本節(jié)課標(biāo)解讀:1.說明以種植業(yè)為主的農(nóng)業(yè)地域類型的形成條件及特點(diǎn);2.說出商品谷物農(nóng)業(yè)的分布范圍,說明商品谷物農(nóng)業(yè)的形成條件及特點(diǎn)。內(nèi)容地位與作用:農(nóng)業(yè)是受自然環(huán)境影響最大的產(chǎn)業(yè)。農(nóng)業(yè)是發(fā)展歷史最悠久的產(chǎn)業(yè),隨著社會(huì)的發(fā)展和進(jìn)步,社會(huì)環(huán)境對(duì)農(nóng)業(yè)的影響越來越大。以季風(fēng)水田農(nóng)業(yè)為主的農(nóng)業(yè)地域類型,主要體現(xiàn)自然環(huán)境對(duì)農(nóng)業(yè)地域形成的影響;商品谷物農(nóng)業(yè)則體現(xiàn)了社會(huì)環(huán)境對(duì)農(nóng)業(yè)地域形成的影響。本節(jié)內(nèi)容包括兩部分內(nèi)容,一個(gè)是季風(fēng)水田農(nóng)業(yè),主要分布在亞洲季風(fēng)區(qū);一個(gè)是商品谷物農(nóng)業(yè),主要分布在發(fā)達(dá)國家。教材文字內(nèi)容不多,配備了大量的地圖和景觀圖。因此,在教學(xué)過程中要充分組織學(xué)生查閱地圖,挖掘地理信息,培養(yǎng)分析能力。分析農(nóng)業(yè)區(qū)位因素時(shí),必須從自然因素和社會(huì)經(jīng)濟(jì)因素兩個(gè)方面去分析,找出優(yōu)勢(shì)區(qū)位因素來。
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為
∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過點(diǎn)(3,√10);(3)a=b,經(jīng)過點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡(jiǎn)單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長(zhǎng)為單位長(zhǎng)度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
這篇《國旗下的講話稿:我的中國夢(mèng)》,是特地,希望對(duì)大家有所幫助!“我們都有一個(gè)家,名字叫中國”正如《龍的傳人》歌詞中講的,我們是華夏族,我們的祖先世世代代都生活在這片華夏土地上——中國。每人都有一個(gè)富強(qiáng)中國的理想,現(xiàn)在,我就說說我的吧。如今,釣魚島事態(tài)嚴(yán)重化,雖然中國現(xiàn)在很強(qiáng)大,但我認(rèn)為,中國的國防實(shí)力還需加強(qiáng),所以我想成為一名飛行員,守護(hù)我們祖國的這片藍(lán)天。要想成為一名飛行員,就得從細(xì)節(jié)做起,從一點(diǎn)一滴的小事做起。首先,我應(yīng)保持一個(gè)良好的視力,其次,學(xué)習(xí)成績(jī)應(yīng)當(dāng)優(yōu)秀,擁有一個(gè)良好的視力是我這個(gè)夢(mèng)想的基礎(chǔ),也是關(guān)鍵,因?yàn)槲乙菦]有一個(gè)良好的視力,學(xué)習(xí)再好,實(shí)現(xiàn)這個(gè)愿望也是無稽之談,其次,若是學(xué)習(xí)不好,視力好也沒有用,沒文化,就是個(gè)睜眼瞎,所以,兩者缺一不可。
關(guān)于中國夢(mèng)的國旗下講話尊敬的學(xué)校老師們,親愛的同學(xué)們,上午好!今天我宣講的題目是:《中國夢(mèng)·我的夢(mèng)》夢(mèng),是對(duì)理想的追求;夢(mèng),是對(duì)事業(yè)的奮斗;夢(mèng),是對(duì)幸福的渴望;夢(mèng),是對(duì)未來的暢想??涓缸啡?,是追求光明的夢(mèng);嫦娥奔月,是為圓飛天的夢(mèng);愚公移山,是改天換地的夢(mèng);而民族復(fù)興,實(shí)現(xiàn)國家富強(qiáng)、民族振興、人民幸福,則是中國人民最偉大的夢(mèng),這就是中國夢(mèng)。中國夢(mèng)涵蓋著我的夢(mèng),你的夢(mèng),他的夢(mèng),十三億人民的夢(mèng)。憶往昔,“雄關(guān)漫道真如鐵”。十九世紀(jì),帝國主義列強(qiáng)的槍炮打碎了天朝上國的夢(mèng),中國人民開始了百余年的長(zhǎng)夜噩夢(mèng)。從此,神州大地孫中山等無數(shù)志士仁人做起了振興中華的夢(mèng),可是,這個(gè)夢(mèng),那個(gè)夢(mèng),都被列強(qiáng)扼殺在搖籃中。1921年,南湖紅船起航了歷史上全新的中國夢(mèng)。為了這個(gè)夢(mèng),革命前輩爬雪山,過草地,拋頭顱,灑熱血……終于在1949年10月1日?qǐng)A了解放夢(mèng),翻身夢(mèng)。新中國的成立,讓中華兒女開始了新的征程,做起了建設(shè)之夢(mèng)、改革之夢(mèng)。這個(gè)夢(mèng)里有我們的爺爺奶奶;這個(gè)夢(mèng)里有我們的父親母親;這個(gè)夢(mèng)里有我們的兄弟姐妹。
演講稿頻道《XX國旗下的講話稿:我的中國夢(mèng)》,希望大家喜歡。“我們都有一個(gè)家,名字叫中國”正如《龍的傳人》歌詞中講的,我們是華夏族,我們的祖先世世代代都生活在這片華夏土地上——中國。每人都有一個(gè)富強(qiáng)中國的理想,現(xiàn)在,我就說說我的吧。如今,釣魚島事態(tài)嚴(yán)重化,雖然中國現(xiàn)在很強(qiáng)大,但我認(rèn)為,中國的國防實(shí)力還需加強(qiáng),所以我想成為一名飛行員,守護(hù)我們祖國的這片藍(lán)天。要想成為一名飛行員,就得從細(xì)節(jié)做起,從一點(diǎn)一滴的小事做起。首先,我應(yīng)保持一個(gè)良好的視力,其次,學(xué)習(xí)成績(jī)應(yīng)當(dāng)優(yōu)秀,擁有一個(gè)良好的視力是我這個(gè)夢(mèng)想的基礎(chǔ),也是關(guān)鍵,因?yàn)槲乙菦]有一個(gè)良好的視力,學(xué)習(xí)再好,實(shí)現(xiàn)這個(gè)愿望也是無稽之談,其次,若是學(xué)習(xí)不好,視力好也沒有用,沒文化,就是個(gè)睜眼瞎,所以,兩者缺一不可。
說教學(xué)目標(biāo):? 1.認(rèn)識(shí)6個(gè)生字,會(huì)寫7個(gè)生字。? 2.正確、流利、有感情地朗讀課文,能結(jié)合注釋了解課文內(nèi)容,背誦課文。? 3.反復(fù)誦讀理解作者熾熱的思想感情;體會(huì)句式整齊,氣勢(shì)磅礴的語言特點(diǎn)。三、說教學(xué)重難點(diǎn):1.能結(jié)合注釋了解課文內(nèi)容,背誦課文。(重點(diǎn))?2.正確理解作者熾烈的感情,領(lǐng)會(huì)文章表現(xiàn)手法的特點(diǎn)。(難點(diǎn))四、說教學(xué)方法:? 根據(jù)設(shè)定的教學(xué)目標(biāo),這節(jié)課我采用的教學(xué)方法有:???1.朗讀法? ??本課課文用語以四字韻文為主,讀起來朗朗上口,讓學(xué)生通過大量的朗讀,感受作者語言上的特點(diǎn),同時(shí)也加深對(duì)課文情感的了解。
同學(xué)們:早上好!今天我講話的題目是“安全在我心中”。安全是幸福,是穩(wěn)定,是祥和。安全是關(guān)懷,是愛護(hù),是喜悅。對(duì)于每個(gè)人來說,生命都只有一次,注意安全,就是善待和珍惜生命的一種有效途徑。調(diào)查顯示,我國中小學(xué)生因交通事故、食物中毒、溺水等原因死亡的,平均每天有40多人,相當(dāng)于每天有一個(gè)班的學(xué)生失去他們?nèi)缁ǖ纳?!這些令人心顫的數(shù)字背后我們看見了什么呢?希望同學(xué)們深思。但是,在我們身邊,仍然有很多同學(xué)的行為存在著安全問題。例如:有的同學(xué)課間在樓道里,追趕、打鬧,做一些危險(xiǎn)的游戲;有的同學(xué)上下樓梯時(shí),你推我擠,甚至把樓梯扶手當(dāng)做滑滑梯;有的同學(xué)隨意地把腦袋探出窗口,或者向窗外扔?xùn)|西
各位老師、親愛的同學(xué)們:大家好!今天我講話的題目是《安全在我心中》。你們知道生活中什么最重要嗎?是安全。只有保證我們生命和生活的安全,一切才有意義。當(dāng)同學(xué)們聽到有關(guān)小學(xué)生意外傷害事故時(shí),不知道你們想了些什么。我想,同學(xué)們至少會(huì)想到:這些教訓(xùn)無論發(fā)生在誰的身上都會(huì)給受害者人身造成傷害、甚至死亡;會(huì)給受害者家庭造成極大的損失;會(huì)給學(xué)校正常教學(xué)秩序造成混亂;會(huì)給社會(huì)造成不穩(wěn)定影響。安全問題關(guān)系到我們每一位學(xué)生的切身利益,只有安全才能為我們保駕護(hù)航。在這里,我向全體同學(xué)發(fā)出倡議:1、校內(nèi)課間不追逐打鬧,上下樓梯慢步輕聲,靠右行。2、放學(xué)按時(shí)離校,不在校園內(nèi)逗留。3、不到小攤小販購買食物,不吃不潔食物,喝水要講究衛(wèi)生,注意身體健康。4、保證用電安全,不亂動(dòng)電源插座。
非常感謝各位領(lǐng)導(dǎo)和老師給我這此學(xué)習(xí)和提高的機(jī)會(huì),今天我說客的題目是小學(xué)主題班會(huì)——《少年強(qiáng)則中國強(qiáng)》,下面我將從設(shè)計(jì)背景、活動(dòng)目標(biāo)、活動(dòng)準(zhǔn)備、活動(dòng)重難點(diǎn)、活動(dòng)方法、活動(dòng)過程、活動(dòng)反思七個(gè)方面進(jìn)行說課。一、 說活動(dòng)設(shè)計(jì)背景(理念)我們的祖國日益強(qiáng)盛,但仍然還面臨著一系列的挑戰(zhàn),但孩子們卻如溫室中的花朵,完全意識(shí)不到自己身上的重?fù)?dān),在學(xué)校比吃比穿,不愛勞動(dòng),無視校規(guī)校紀(jì),沉迷網(wǎng)絡(luò)游戲,凡事不能自立自強(qiáng),反而我行我素。因此,我們開展《少年強(qiáng)則中國強(qiáng)》的主題班會(huì)目的就是要激勵(lì)我們青少年從自己做起,從小事做起,以實(shí)際行動(dòng)投身到熱愛祖國中去,從小立志:今天為振興中華而努力學(xué)習(xí),明天為創(chuàng)造祖國美好未來貢獻(xiàn)力量。