本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實踐相互銜接的樞紐,特別在應(yīng)用意識日益加深的今天,函數(shù)模型的應(yīng)用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認(rèn)識函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運算:運用函數(shù)模型解決實際問題;
1.確定研究對象,明確哪個是解釋變量,哪個是響應(yīng)變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉(zhuǎn)化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).
(三)創(chuàng)建工作成效“亮起來”。近年來,市政府辦模范機關(guān)創(chuàng)建堅持在傳承中拓展,在創(chuàng)新中提升,影響力和美譽度在市直機關(guān)中呈逐年上升態(tài)勢。機關(guān)3個D支部分別被授予市直機關(guān)“五星”“四星”D支部稱號,其余D支部均榮獲“先進D組織”稱號。機關(guān)D建“三手三服務(wù)”品牌成功獲評市直機關(guān)“優(yōu)秀D建品牌”稱號。綜合考核連續(xù)6年被評為“好”等次,效能考核連續(xù)2年位列同類別單位“第一名”,政務(wù)信息綜合考評位居全省“第一名”,優(yōu)化營商環(huán)境工作獲評全省優(yōu)秀單位,值班值守在全省政府系統(tǒng)通報表揚。三、下一步計劃建設(shè)模范機關(guān)不是一朝一夕,必須常抓不懈、久久為功;走在前、做表率也不是一時一事,必須內(nèi)化于心、外化于行。接下來,我辦機關(guān)D組將要求全體D員都要從我做起、身體力行、把自己擺進去,朝著目標(biāo)努力,把強化政治機關(guān)意識、把帶頭做到“兩個維護”,體現(xiàn)在堅決貫徹D中央決策部署的行動上,體現(xiàn)在履職盡責(zé)、做好本職工作的實效上,體現(xiàn)在每名D員、干部的日常言行上。
2.比較物體的高度和影長時,要在同一( )、同一( )進行。3.在同一時間、同一地點,物體的高度和影長成( )比例。4.同樣高度的物體在不同時間、不同地點測出的影長是會( )的。 5、李明在操場上插上幾根長短不同的的竹竿,在同一時間里測量這幾根竹竿的長和相應(yīng)的影長情況如下表: 竹竿長/米11.21.8245影長/米0.50.60.9122.5比值 (1)算出竹竿和影長的比值,并填在表格中。 (2)通過測量和計算,你發(fā)現(xiàn)了什么? (3)這時李明測出旗桿的影長是5米,你能求出旗桿的實際高度是多少米? (4)這時王剛測出一棵松樹的影長是2.4米,你能算出這棵松樹的實際高度嗎? 6、為了測量出學(xué)校旗桿的高度,同學(xué)們找來了一根長8分米的木棍立在旗桿旁,發(fā)現(xiàn)木棍的影長是6分米,同時又發(fā)現(xiàn)旗桿的影長是7.5米,你能求出旗桿的高度嗎? 7.在同一時刻,小璐測得她的影長為1米,距她不遠(yuǎn)處的一棵槐樹的影長為5米。已知小璐的身高為1.3米,這棵槐樹的有多高。
提問:1.怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系? 2.判斷下面兩種量是否成正比例?為什么? (1)時間一定,行駛的路程和速度 (2)除數(shù)一定,被除數(shù)和商 3.單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例? 4.導(dǎo)入新課: 如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量存在什么關(guān)系?今天,我們就來研究這種變化規(guī)律。
(一)觀圖激趣、設(shè)疑導(dǎo)入 出示課件的第二張幻燈片。師:請說出與老師相反的詞語或句子。向上看。向東走50米。小維在知識競賽中贏了20分。小明在銀行存入300元錢。零上10℃。生:……。師:這就是我們今天要學(xué)習(xí)的負(fù)數(shù)。板書:負(fù)數(shù)(二)探究新知1、出示課件的第三張幻燈片。師:請大家仔細(xì)觀察上圖,你發(fā)現(xiàn)什么問題?學(xué)生以小組為單位交流。學(xué)生以小組為單位匯報交流結(jié)果。生:0℃表示什么意思呢?生:3℃和-3℃表示的意思一樣嗎?師:小組內(nèi)交流解決上述問題。學(xué)生以小組為單位探究交流。學(xué)生以小組為單位匯報探究交流結(jié)果。老師對學(xué)生匯報給予適當(dāng)?shù)脑u價。老師課件出示答案。師:0℃表示淡水結(jié)冰的溫度,比0℃低的溫度叫零下溫度,通常在數(shù)字前加“-”(負(fù)號),如-3 ℃表示零下3攝氏度,讀作負(fù)三攝氏度;比0℃高的溫度叫零上溫度,在數(shù)字前加“+”(正號),一般情況下可省略不寫:如+3℃表示零上三攝氏度,讀作正三攝氏度,也可以寫成3℃,讀作三攝氏度。
一、說教材該內(nèi)容是人教版小學(xué)數(shù)學(xué)四年級第八冊第四單元的最后一個內(nèi)容,是在學(xué)生已經(jīng)掌握了把整萬、整億數(shù)改寫成用萬或億作單位的數(shù)的基礎(chǔ)上進行教學(xué)的。通過本節(jié)課的學(xué)習(xí),要使學(xué)生能通過獨立思考、合作交流,掌握把大數(shù)目改寫成用“萬”或“億”作單位的數(shù)的方法,為以后能準(zhǔn)確、恰當(dāng)?shù)剡\用數(shù)目描述生活現(xiàn)象打下良好的基礎(chǔ)。根據(jù)本課的內(nèi)容和學(xué)生已有的知識和心理特征,我制訂如下教學(xué)目標(biāo):1、掌握把較大數(shù)改寫成用“萬”或“億”作單位的數(shù)的方法,并能根據(jù)要求保留一定的小數(shù)位數(shù)。2、經(jīng)歷將一個數(shù)改寫成用“萬”或“億”作單位的數(shù)的過程,體驗數(shù)據(jù)記法的多樣性。3、感受數(shù)學(xué)知識的應(yīng)用性。理解和掌握把較大的數(shù)改寫成用“萬”或“億”作單位的小數(shù)的方法是本課的教學(xué)重點。位數(shù)不夠用0補足是本節(jié)課的難點。
一 說教材運算定律和簡便計算的單元復(fù)習(xí)是人教版第八冊第三單元內(nèi)容,屬于“數(shù)與代數(shù)”領(lǐng)域。本節(jié)內(nèi)容是在學(xué)生學(xué)習(xí)了運算定律(加法交換律、加法結(jié)合律、乘法交換律、乘法結(jié)合律和乘法分配律)以及基本的簡便計算方法(連減、連除)基礎(chǔ)上進行的整理復(fù)習(xí)課。二、說教學(xué)目標(biāo)及重難點1、通過復(fù)習(xí)、梳理,學(xué)生能熟練掌握加法、乘法等運算定律,能運用運算定律進行簡便計算。2、培養(yǎng)學(xué)生根據(jù)實際情況,選擇算法的能力,能靈活地解決現(xiàn)實生活中的簡單實際問題。教學(xué)重點:理解并熟練掌握運算定律,正確進行簡便計算。教學(xué)難點:根據(jù)實際,靈活計算。三、說教法學(xué)法根據(jù)教學(xué)目標(biāo)及重難點,采用小組合作、自主探究、動手操作的學(xué)習(xí)方式。四、說教學(xué)過程
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
一手抓投資拓展,建立推行“四個一批”重大項目推進機制和市級領(lǐng)導(dǎo)聯(lián)系幫扶重點項目建設(shè)機制,全力推進“十四五”規(guī)劃項目和省市重點項目建設(shè),舉辦兩次重點項目集中開工活動,掀起了重點項目建設(shè)熱潮,投資規(guī)模進一步擴大、投資結(jié)構(gòu)進一步優(yōu)化,X個省重點項目、X個市重點項目均實現(xiàn)“時間過半、任務(wù)過半”,工業(yè)技改投資、高新技術(shù)產(chǎn)業(yè)投資均保持X%以上的增速,高于固定資產(chǎn)投資增速。一手抓消費促進,開展系列促消費活動,推進商貿(mào)物流標(biāo)準(zhǔn)化、電子商務(wù)進農(nóng)村、農(nóng)產(chǎn)品冷鏈物流建設(shè),消費市場逐步復(fù)蘇,X-X月全市社會消費品零售總額增長X%。
自去年11月至今年4月上旬,我縣境內(nèi)無有效降水,造成冬春連旱,今年1-5月的總降水量僅為37.2毫米,較歷年同期偏少5成多。從剛才縣氣象局的通報情況看,受厄爾尼諾現(xiàn)象持續(xù)影響,今年汛期出現(xiàn)干旱、局地暴雨、雷電、冰雹和大風(fēng)等強對流天氣頻率增加,中小河流的防汛和城市內(nèi)澇以及山洪地質(zhì)災(zāi)害風(fēng)險的機率明顯加大。
一是縣域經(jīng)濟穩(wěn)步推進,交出了一張穩(wěn)中有進的合格答卷。經(jīng)濟指標(biāo)穩(wěn)中向好,全年地區(qū)生產(chǎn)總值完成*億元,同比增長*%;財政總收入達(dá)*億元,同比增長*%;全體居民人均可支配收入達(dá)*****元,同比增長*%;*項指標(biāo)增速排名全市前列,其中,房地產(chǎn)開發(fā)投資、商品房銷售面積、全社會用電量、工業(yè)用電量增速位列全市第*,進出口總額增速位列全市第*。特色產(chǎn)業(yè)快速發(fā)展,建成省市級現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)示范園**個,獲評“全國綠色食品原料標(biāo)準(zhǔn)化生產(chǎn)基地縣”,**牧業(yè)獲評國家級農(nóng)業(yè)龍頭企業(yè),**被評為全國農(nóng)業(yè)產(chǎn)業(yè)強鎮(zhèn);引進高新技術(shù)企業(yè)*家,全縣規(guī)模以上工業(yè)企業(yè)達(dá)到**家,規(guī)模工業(yè)總產(chǎn)值同比增長**%;年接待游客突破***萬人次,實現(xiàn)旅游綜合收入**億元;風(fēng)力發(fā)電量達(dá)**億千瓦時,實現(xiàn)銷售收入**億元;全縣電子商務(wù)交易額達(dá)**億元,農(nóng)產(chǎn)品網(wǎng)絡(luò)銷售額達(dá)*億元。重點項目全面推進,全縣**個重點項目加快建設(shè),其中*個市重點項目完成投資年度計劃任務(wù)***%
全力確保穩(wěn)增長。當(dāng)前經(jīng)濟發(fā)展形勢十分復(fù)雜,各種困難問題疊加,穩(wěn)增長的壓力很大。我區(qū)正處在轉(zhuǎn)型發(fā)展的關(guān)鍵期、過渡期,經(jīng)濟發(fā)展基礎(chǔ)不厚實、支撐不牢固,面臨的困難更多。總的看,上半年經(jīng)濟工作有喜有憂。部分指標(biāo)超過時間進度,但有些指標(biāo)落后時間進度,生產(chǎn)總值、規(guī)模以上工業(yè)增加值、固定資產(chǎn)投資等指標(biāo)無論總量還是增幅都與先進地區(qū)有較大差距。
政府辦公室屬于政府系統(tǒng)的“參謀部”、“指揮部”和“后勤部”,處于承上啟下、協(xié)調(diào)左右、溝通內(nèi)外、聯(lián)系各方的核心、樞紐、“心臟”地位,作用非常重要,責(zé)任非常重大。這就要求我們牢牢把握職能定位,切實充當(dāng)服務(wù)上的“有心人”,把參謀輔政當(dāng)成一份責(zé)任、一種信念,盡心盡力地當(dāng)好參謀助手。
要認(rèn)清形勢,切實增強責(zé)任感緊迫感使命感。去年,全州各級各部門立足防大汛、抗大旱、搶大險、救大災(zāi),有效應(yīng)對了23輪強降雨過程,有力保障了人民群眾生命財產(chǎn)安全。去年,我州是全省的安全生產(chǎn)先進單位,無論是防汛抗旱還是疫情防控,都取得了很好的成績。今年,我們要再接再厲,繼續(xù)統(tǒng)籌好發(fā)展與安全工作,繼續(xù)抓好安全生產(chǎn)、防汛抗旱工作。今年以來,各級各部門積極開展各項汛前準(zhǔn)備工作,在責(zé)任落實、預(yù)案修訂、隊伍建設(shè)、物資儲備等方面都取得了明顯的進展,培訓(xùn)演練、隱患排查整改等工作都在穩(wěn)步推進當(dāng)中。但從各方面情況綜合分析來看,全州防汛抗旱形勢依然不容樂觀。