方法總結:本題結合三角形內(nèi)角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.在假設結論不成立時要注意考慮結論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.解決幾何證明題時,應結合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結論出發(fā),探尋結論成立所需的條件)的方法.
方法總結:解題的關鍵是由題意列出不等式求出這個少算的內(nèi)角的取值范圍.探究點二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結:如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運用一個多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結:熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關鍵是由已知等量關系列出方程從而解決問題.
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結:約分的步驟;(1)找公因式.當分子、分母是多項式時應先分解因式;(2)約去分子、分母的公因式.三、板書設計1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢探究分式變號法則.在每個活動中,都設計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.
探究點二:列分式方程某工廠生產(chǎn)一種零件,計劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設原計劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關系:(原計劃20天生產(chǎn)的零件個數(shù)+10個)÷實際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關系列出方程即可.設原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結:此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系,列出方程.三、板書設計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應用,感受數(shù)學之美.
把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計算出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結:此題主要考查了一元一次不等式組的解法,解決此類問題的關鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進而求得不等式組的整數(shù)解.三、板書設計一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎之上.解不等式組時,先解每一個不等式,再確定各個不等式組的解集的公共部分.
分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結:最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當分母是多項式時,一般應先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應當乘的單項式,分子也相應地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應選購A型1臺,B型9臺.方法總結:此題將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應把幾種情況進行比較.三、板書設計應用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關系設未知數(shù)列不等式―→解不等式―→結合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結合,引導學生找不等關系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯(lián)系.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應點到旋轉(zhuǎn)中心的距離相等且F是E的對應點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應點到旋轉(zhuǎn)中心的距離相等,任意一組對應點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應線段相等,對應角相等.
方法總結:已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設計1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項;(4)合并同類項;(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時有所不同.如果這個系數(shù)是正數(shù),不等號的方向不變;如果這個系數(shù)是負數(shù),不等號的方向改變.這也是這節(jié)課學生容易出錯的地方.教學時要大膽放手,不要怕學生出錯,通過學生犯的錯誤引起學生注意,理解產(chǎn)生錯誤的原因,以便在以后的學習中避免出錯.
安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設備2臺,乙種設備10臺;②購買甲種設備3臺,乙種設備9臺;③購買甲種設備4臺,乙種設備8臺.方法總結:列不等式組解應用題時,一般只設一個未知數(shù),找出兩個或兩個以上的不等關系,相應地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應求整數(shù)解.三、板書設計1.一元一次不等式組的解法2.一元一次不等式組的實際應用利用一元一次不等式組解應用題關鍵是找出所有可能表達題意的不等關系,再根據(jù)各個不等關系列成相應的不等式,組成不等式組.在教學時要讓學生養(yǎng)成檢驗的習慣,感受運用數(shù)學知識解決問題的過程,提高實際操作能力.
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結合思想與方程思想的應用.
如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內(nèi)容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常常考慮此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調(diào),借助多媒體加以突出.
[設計意圖]節(jié)環(huán)節(jié)的設置是為了使學生在掌握不等式性質(zhì)的基礎之上,加以拓展的作業(yè),使課程的內(nèi)容不但能滿足全體學生需求,更能滿足學有余力的學生得到更大收獲,從數(shù)軸上獲取信息來完成填空,從而體現(xiàn)數(shù)形結合的思想,學生通過參與活動,體會挑戰(zhàn)成功的喜悅,并且他們的求勝心理得到了滿足,沉醉在知識給他們帶來的快感中完成本節(jié)課的學習,(六)課堂小結最后,凱旋歸來話收獲:通過本節(jié)課的學習,你收獲到了什么?學生們都積極的舉手回答,說出了各種各樣的收獲,比如:1、學會了不等式的三條基本性質(zhì)2、學會了用字母來表示不等式的性質(zhì)3、學生不等式與等式的區(qū)別等等;學生在回答的時候,老師加以評價和表揚并展示主要內(nèi)容;這里教師要再次強調(diào),特別注意性質(zhì)3,兩邊同乘(或除以)一個負數(shù)時,不等號的方向要改變,數(shù)學思想的方法是數(shù)學的靈魂,這節(jié)課我們體驗了三種數(shù)學思想,一是類比的思想,二是數(shù)形結合的思想,三是分類討論的思想,
5、板書設計 §1.4船有觸礁的危險嗎 一、船布觸礁的危險嗎 1.根據(jù)題意,畫出示意圖.將實際問題轉(zhuǎn)化為數(shù)學問題. 2.用三角函數(shù)和方程的思想解決關于直角三角形的問題. 3.解釋最后的結果. 二、測量塔高 三、改造樓梯 五布置課后作業(yè): 習題1.6第12 3題 六、設計說明 具有現(xiàn)實意義和挑戰(zhàn)性的內(nèi)容的設計,激發(fā)學生的學習興趣,使學生樂學。 開放性實踐問題和分層作業(yè)的設置,滿足每個學生的學習需求,使學生愿學。 多樣的學習方式和適時引導,提高學生的學習質(zhì)量,使學生能學。 背景多樣,層層遞進,適時反思,發(fā)展學生的數(shù)學思維能力,使學生活學。 當學生樂學、愿學、能學、活學時,就將學會學習,將學習當成樂趣,作為生命中不可或缺的部分,也為學生終生學習奠定良好的基礎。
尊敬的各位領導、老師:大家下午好!今天我說課的題目是《100以內(nèi)數(shù)的大小比較》,我將從教材、教法學法、教學流程、板書設計、教學反思五個方面來談一談。一、說教材1.教學內(nèi)容這節(jié)課是義務教育課程標準人教版實驗教科書,數(shù)學一年級下冊第四單元《100以內(nèi)數(shù)的認識》中的例5“比較大小”。2.教材分析學生在此之前,已經(jīng)學習了20以內(nèi)各數(shù)的認識及比較大小,這為過渡到本節(jié)課的學習起著鋪墊作用,“做一做”可以幫助學生進一步鞏固比較兩個兩位數(shù)大小的方法。3.教學目標為了實現(xiàn)“人人學有價值的數(shù)學,人人都獲得必須的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展?!蔽掖_定了如下的教學目標:(1)利用現(xiàn)實有趣的情境激發(fā)學生的求知欲、學習數(shù)學的興趣。(2)培養(yǎng)學生觀察、比較、提出問題和解決問題的能力。
四、說教法與學法說教法:情境教學,在例題的教學中創(chuàng)設符合學生生活情境的學習環(huán)境,引導學生投入到學習當中。說學法:自主探索、合作交流的學習方法。學生們通過觀察、比較和交流等學習活動,自主探索小數(shù)大小的比較方法。五、說教學過程(一)復習 1、王老師帶了300元錢去買自行車,一輛自行車的價錢是295元,請問王老師帶的錢夠不夠?(要求學生說出整數(shù)比大小的方法) 2、在下列各數(shù)按從大到小的順序排列,你是怎樣比較的? 999 1000 758 786小結:當整數(shù)位數(shù)不同時,位數(shù)多的那個數(shù)就大。當整數(shù)數(shù)位相同時,從高位開始比較,按數(shù)位順序一位一位地比,哪一位的數(shù)大,那個數(shù)就大,就不再比下一位了。 3、小明帶了14元8角,到自選商場買一支鋼筆,結果發(fā)現(xiàn)一支鋼筆的價錢是13.50元,那么小明帶的錢夠嗎? (設計意圖:這樣的設計從舊知識導入,可以分散本節(jié)課的教學難點,為學習新知識做好鋪墊。)
一、說教材圖形的放大與縮小是人教版數(shù)學六年級下冊第四單元《比例》中的內(nèi)容。以前學生對比、比例、比例尺有了初步的認識和了解,對比、比例的意義進行了研究,通過學習,學生對比、比例、比例尺有了很深刻的認識。二、說教法、學法教法:本節(jié)課我采用具體的實驗操作,讓學生動手畫一畫、比一比、看一看等方法,從而發(fā)現(xiàn)圖形的放大與縮小與原圖比較只是大小變化,形狀沒變。學法:教學中充分發(fā)揮學生的主體作用。學生能做的盡量讓學生自己做,學生能想的盡量讓學生自己想,學生能說的盡量讓學生自己說。學生不能想的,教師啟發(fā)、引導學生想,學習的整個學習過程圍繞著教師創(chuàng)設的問題情境之中。 三、教學重、難點重點:能在方格紙上按一定的比將簡單圖形放大或縮小。難點:使學生知道圖形按一定的比放大或縮小后,只是大小發(fā)生了變化,形狀沒變,從而體會圖形相似變化的特點。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。