1、教材的地位《觀察物體》這節(jié)課是人教版《義務(wù)教育教科書?數(shù)學(xué)(二年級上冊)》第五單元的第一課時。教材是從學(xué)生已有生活經(jīng)驗出發(fā)以及已學(xué)習(xí)了位置知識的基礎(chǔ)上,借助于生活中的實物和學(xué)生的操作活動進行教學(xué)的。主要幫助學(xué)生建立初步的空間觀念,發(fā)展他們的形象思維,通過一些活動,使學(xué)生認(rèn)識到,從不同的角度觀察同一個物體,看到的物體的形狀可能是不同的,并讓學(xué)生初步體會局部與整體的關(guān)系,通過這部分內(nèi)容的教學(xué),不但可以使學(xué)生學(xué)會從不同的角度觀察物體,而且又為以后學(xué)習(xí)有關(guān)幾何圖形的知識打下堅實的基礎(chǔ)。 2、教學(xué)目標(biāo)依照《新課程標(biāo)準(zhǔn)》的要求,結(jié)合教材和學(xué)生的特點,從知識與技能、過程與方法和情感態(tài)度價值觀三方面制定以下教學(xué)目標(biāo):(1)能辨認(rèn)并能想象從不同位置看到的簡單物體的形狀。 (2)在探究中,學(xué)生掌握全面、正確的觀察物體的基本方法,并感受到局部與整體的關(guān)系。 (3)通過活動,感受數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生觀察物體的興趣和熱情。3、教學(xué)重點、難點由于小學(xué)二年級的學(xué)生方位感不強,他們往往前后不分,左右搞錯,觀察周圍的事物也是比較單純、直觀地看表面。
一、說教材《加減混合》是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(人教版)二年級上冊第28頁的例3和例4。這個知識點是在上一課時《連加、連減》知識的基礎(chǔ)上進行的一個提升和知識點的整合。二、教學(xué)目標(biāo) 1、結(jié)合具體的情境,讓學(xué)生經(jīng)理探索加減混合運算的計算方法的過程。 2、使學(xué)生掌握100以內(nèi)數(shù)加減混合運算的計算方法,并學(xué)習(xí)筆算的書寫格式,掌握簡便寫法。 3、讓學(xué)社在解決簡單問題的過程中,體會數(shù)學(xué)與生活的密切聯(lián)系。三、說教學(xué)重點難點重點:正確計算加減混合式題。 難點:優(yōu)化算法,正確計算加減混合式題。 四、說教學(xué)程序 根據(jù)本節(jié)課的特點,我準(zhǔn)備采用演示法、比較法、談話法、討論法和練習(xí)法等多種教學(xué)方法,設(shè)計了如下教學(xué)過程:
二、學(xué)情分析五年級的學(xué)生具備了一定的思維能力,因此,教學(xué)過程中創(chuàng)設(shè)的問題情境力求貼近學(xué)生的生活,從而引起學(xué)生的思考。由于學(xué)生概括能力較弱,推理能力還有待發(fā)展,很大程度上還需要依賴具體形象的經(jīng)驗材料來理解抽象邏輯關(guān)系。所以在教學(xué)時,注重讓學(xué)生充分試驗、收集、分析數(shù)據(jù),幫助他們對生活中的常見現(xiàn)象發(fā)生的可能性進行正確的分析和判斷,所以本節(jié)課中,應(yīng)多為學(xué)生創(chuàng)自主學(xué)習(xí)、合作學(xué)習(xí)的機會,讓他們主動參與、勤于動手,從而樂于探究。二、教學(xué)目標(biāo)新的課程標(biāo)準(zhǔn)中倡導(dǎo)教師要關(guān)注每一個學(xué)生的發(fā)展,教師應(yīng)該是教育教學(xué)的促進者和引導(dǎo)者,因此,我結(jié)合本節(jié)課的內(nèi)容和學(xué)生的實際,并從知識與技能、過程與方法、情感態(tài)度與價值觀的三維目標(biāo)整合的角度特確定本節(jié)課的教學(xué)目標(biāo) 1.通過試驗操作,懂得有些事情的發(fā)生是確定的,有些則是不確定的,并用“一定”“不可能”“可能”等詞語來描述知道事情發(fā)生的可能性是有大有小的,且可能性的大小與物體數(shù)量有關(guān)。2.經(jīng)歷猜測、試驗、收集與分析試驗結(jié)果等過程。 3培養(yǎng)學(xué)生的隨機觀念以及培養(yǎng)學(xué)生判斷、推理和合作探究的能力。
二、說教學(xué)目標(biāo)知識與技能:初步理解“方程的解”和“解方程”的含義,以及之間的聯(lián)系和區(qū)別。能用等式的性質(zhì)解形如X±a=b的方程,掌握解方程的格式和寫法。初步學(xué)會檢驗?zāi)硞€數(shù)是否是方程的解,培養(yǎng)學(xué)生檢驗的習(xí)慣,提高計算能力。過程和方法:通過探索、討論、交流等活動,讓學(xué)生初步理解“方程的解”和“解方程”的概念。經(jīng)歷運用等式的性質(zhì)探究方程解法的過程,體會方程的解法和等式的性質(zhì)之間的聯(lián)系。情感、態(tài)度與價值觀:1. 學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心和求知欲。2. 在觀察、猜想、驗證等數(shù)學(xué)活動中,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)。重點:方程的解和解方程的概念,初步掌握用等式性質(zhì)來解簡易方程的方法。難點:區(qū)別方程的解和解方程的含義。解方程的算理。三、說教法與學(xué)法教法:新課標(biāo)指出,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者,充分發(fā)揮學(xué)生的主體性。根據(jù)這一理念,我在教學(xué)中通過觀察、猜想、驗證等方式,自主探索、自主學(xué)習(xí)。有目的地運用知識遷移的規(guī)律,引導(dǎo)學(xué)生進行觀察、比較、分析、概括,培養(yǎng)學(xué)生的邏輯思維能力。學(xué)法:①讓學(xué)生學(xué)會以舊引新,掌握并運用知識遷移進行學(xué)習(xí)的方法;②讓學(xué)生學(xué)會自主發(fā)現(xiàn)問題,分析問題,解決問題的方法。
回答“朝聞道夕死可矣”是哪位古人的名言,和我校的校園文化有何歷史淵源?同學(xué)們異口同聲地回答是“孔子”,并有自豪的表情。我感到本節(jié)課達到了預(yù)期效果。二、本節(jié)課的一些特點和成功之處:1、 從重知識的傳授轉(zhuǎn)向重能力的培養(yǎng)。注重了培養(yǎng)學(xué)生的想象能力、善于發(fā)現(xiàn)、觀察和審視美的能力、注重培養(yǎng)學(xué)生的質(zhì)疑能力、以及類比推理能力。2、 注重物理課程的校本化、注重學(xué)科與校園文化、中國古代文化相融合。將屈原、孔子等人的思想與本節(jié)課所提倡的科學(xué)精神進行了恰當(dāng)?shù)穆?lián)系。將中國古代樸素的時空觀如“天上一日,地上一年”、大家耳熟能詳?shù)摹耙晃m映世界、一剎那含永遠(yuǎn)”等思想與愛因斯坦的“相對論”進行了類比。將中國古代的“太極圖”與哈勃望遠(yuǎn)鏡拍攝的“渦旋星系”作類比,這不但能激發(fā)學(xué)生的想象力、類比能力,還能增強民族自豪感和對學(xué)校的熱愛。
解:(1)設(shè)第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當(dāng)x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學(xué)建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標(biāo)軸交點坐標(biāo),會結(jié)合函數(shù)圖象求方程的根.教學(xué)重點:二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點:用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時,所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗證求解.三、板書設(shè)計1.邊邊邊:三邊對應(yīng)相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進了學(xué)生對新知識的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊邊邊”掌握較好,達到了教學(xué)的預(yù)期目的.存在的問題是少數(shù)學(xué)生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學(xué)中進一步加強鞏固和訓(xùn)練
1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點)2.能運用“角邊角”“角角邊”判定方法解決有關(guān)問題.(難點) 一、情境導(dǎo)入如圖所示,某同學(xué)把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學(xué)生活動:學(xué)生先自主探究出答案,然后再與同學(xué)進行交流.教師點撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據(jù)平行線的性質(zhì)可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質(zhì)可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時是在上一課時的基礎(chǔ)上進行的拓展延伸,在教學(xué)時要給學(xué)生足夠主動權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時提高學(xué)生的邏輯思維能力.
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進行解答.
首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個別學(xué)生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關(guān)系式加以計算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時,運用直角三角形有關(guān)知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設(shè)計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應(yīng)相等的兩個三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學(xué)生從直觀上積累感性認(rèn)識,從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進了學(xué)生對新知識的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學(xué)和作業(yè)中進一步加強分類思想的鞏固和訓(xùn)練
解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設(shè)計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進行對比和篩選,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
十一、說互動:教師與學(xué)生的互動、學(xué)生與學(xué)生的互動和小組之間的互動,以多種形式表現(xiàn)歌曲。十二、說板書:本節(jié)課我的板書設(shè)計主要以突破重難點為主,可讓學(xué)生直觀看到所要學(xué)習(xí)的新知識,很快掌握6/8拍節(jié)奏的特點,并鞏固加深所學(xué)習(xí)過的音樂知識,在演唱的時候能夠完整準(zhǔn)確地運用所學(xué)的知識。十三、說媒體:主要目的用于聆聽和感受音樂,讓學(xué)生更好的參與教學(xué)活動,也充分調(diào)動了學(xué)生的多種感官,啟發(fā)學(xué)生的聯(lián)想和想象力,激發(fā)學(xué)生的學(xué)習(xí)興趣與求知欲,豐富學(xué)生情感。十四、說評價:以多元化形式評價,本節(jié)課我采用的是師生評價,老師對學(xué)生的評價,學(xué)生對老師的評價,學(xué)生對學(xué)生的評價。貫穿整個教學(xué)過程,以利于促進學(xué)生發(fā)展。學(xué)生對學(xué)生的評價:體現(xiàn)在音樂活動中,學(xué)生對學(xué)生的表現(xiàn)給予正確的評價,對音樂的表現(xiàn)有一個很好的認(rèn)識和提高。
5、請小朋友回去后把學(xué)會的兒歌念給爸爸媽媽聽,請他們猜猜,兒歌里藏著多少數(shù)字?小雞一家一共有幾只小雞?活動總結(jié)及反思1、兒歌的內(nèi)容和形式比較吸引幼兒。整個活動的設(shè)計由易到難,層層遞進,提問體現(xiàn)層次性。幼兒通過看、聽、表演等形式,表現(xiàn)出對學(xué)習(xí)數(shù)字歌謠的濃厚興趣。兒歌的主題貼近幼兒的生活,有利于幼兒理解、分享交流、想象擴散。在目標(biāo)、內(nèi)容上能與計算、德育、生活相結(jié)合,體現(xiàn)整合觀。2、兒歌中小雞一家還隱藏著數(shù)字"10",可以讓幼兒回家和家長一起把數(shù)字"10"編入兒歌。這樣使兒歌更有完整性,也能讓家長參與,體現(xiàn)家園互動。3、幼兒在念兒歌時,有些生疏,教師可以提醒幼兒想著數(shù)字順序、記著數(shù)字念兒歌。讓孩子學(xué)會念數(shù)字歌謠的方法4、活動的過程中幼兒可能容易走神,如何抓住幼兒的注意力,讓整堂課可以順利的完成成為考驗教師的難點。