【說教材分析】本節(jié)課的教學(xué)內(nèi)容是千以內(nèi)數(shù)的大小比較,教材把比較數(shù)的大小分為兩種情況:位數(shù)相同的數(shù)比較大小,位數(shù)不同的數(shù)比較大小。是在學(xué)生掌握了百以內(nèi)數(shù)的大小比較方法,能認(rèn)讀千以內(nèi)數(shù),理解數(shù)的組成的基礎(chǔ)上開展教學(xué)的。而且在實(shí)際生活中,學(xué)生積累了大量感性經(jīng)驗(yàn),學(xué)生已經(jīng)能初步感知、判斷出數(shù)的大小。本節(jié)課的重點(diǎn)首先應(yīng)達(dá)成知識(shí)技能目標(biāo),學(xué)生自主探究出千以內(nèi)數(shù)的大小比較方法,能正確、快速比較出千以內(nèi)數(shù)的大小,在大量的、多種形式的練習(xí)中培養(yǎng)學(xué)生的數(shù)感。教材沒有將比較數(shù)的大小的方法歸納概括出來,是放手讓學(xué)生自主觀察、比較、分析、概括,合作商量,在學(xué)生充分表達(dá)、交流自己的想法的過程中,讓學(xué)生自己發(fā)現(xiàn)、總結(jié)出數(shù)的大小比較方法。其次,在實(shí)際應(yīng)用中讓學(xué)生體會(huì)到生活中對數(shù)的應(yīng)用的廣泛性、實(shí)用性,從而強(qiáng)化所學(xué)知識(shí),獲得積極的情感體驗(yàn)。
由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點(diǎn)坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準(zhǔn)確.三、板書設(shè)計(jì)1.二元一次方程組的解是對應(yīng)的兩條直線的交點(diǎn)坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個(gè)方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象;(3)觀察圖象,找出交點(diǎn)的坐標(biāo);(4)寫出方程組的解.通過引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進(jìn)一步揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點(diǎn)之間的對應(yīng)關(guān)系.進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí),充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時(shí)彈簧長15厘米;當(dāng)所掛物體的質(zhì)量為3千克時(shí),彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時(shí)彈簧的長度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報(bào),近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時(shí)間t(分)之間的關(guān)系.當(dāng)時(shí)間t等于多少分鐘時(shí),我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實(shí)際問題時(shí)從不同角度思考問題,就會(huì)得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式: ;2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b,進(jìn)而得到一次函數(shù)的表達(dá)式.
在“實(shí)例導(dǎo)入,激發(fā)興趣”這一環(huán)節(jié)中我運(yùn)用課件展示收集礦泉水瓶情況統(tǒng)計(jì)表,以生活中的環(huán)保例子為話題引入新課,激發(fā)學(xué)生的興趣。在“自主探究,嘗試估算”這一環(huán)節(jié)中我安排了同桌合作、互相交流算法,盡量把不同的策略都展現(xiàn)出來,使學(xué)生通過討論體會(huì)到:解決同一個(gè)問題可以有不同的方法,只要合理都可以采用。計(jì)算策略不同,估算的結(jié)果也會(huì)不同。如估算第三、四周一共收集的個(gè)數(shù):如果把192看做190,把219看做220,結(jié)果是410個(gè);如果把192看做200,把219看做200,結(jié)果是400個(gè),兩種結(jié)果都是合理的,只是一種稍微粗略些,一種稍微精確些。經(jīng)過學(xué)習(xí),學(xué)生掌握了一些基本的估算方法和估算策略。這樣設(shè)計(jì)的用意是:數(shù)學(xué)源于生活,用于生活,我選擇學(xué)生身邊的素材,激發(fā)學(xué)生的興趣和求知欲,使學(xué)生積極主動(dòng)的尋求解決問題的方法。
一、創(chuàng)設(shè)情境,導(dǎo)入新課教師邊放課件邊講故事):今天老師給你們講一個(gè)“猴媽媽分桃”的故事。有一天,一群小猴到山下去玩,走著走著,看到一棵桃樹上結(jié)滿了又大又紅的桃,就摘了很多?;丶液螅飲寢尶吹叫『飩兡昧诉@么多桃回來,可高興了,說:“媽媽分桃給你們吃。”二、合作交流,探索新知1、動(dòng)手操作,探究方法(1)提出問題。師:小猴摘了多少個(gè)桃?準(zhǔn)備每只小猴分3個(gè),可分給幾只猴子?(板書:12個(gè)桃,每只小猴分3個(gè),可以分給幾只小猴?)(2)學(xué)生列式:12÷3=(3)分一分學(xué)生小組合作,動(dòng)手分一分。(可以用其他的物體代替)(4)說一說分的過程可能有以下幾種:第一種:先分給第一只小猴3個(gè)桃,再分給第二只小猴3個(gè)桃,然后給第3只小猴3個(gè)桃,最后3個(gè)桃正好分給第四只小猴。……12個(gè)桃可分4只猴子。
(二)解決問題,總結(jié)方法《新課程標(biāo)準(zhǔn)》主張充分挖掘數(shù)學(xué)教材潛在的“再創(chuàng)造空間”,讓學(xué)生親自經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程,讓學(xué)生最大限度地參與數(shù)學(xué)知識(shí)的發(fā)現(xiàn)、提出、形成、應(yīng)用的再創(chuàng)造過程,以促進(jìn)學(xué)生主動(dòng)的發(fā)展。因此我創(chuàng)設(shè)了福娃晶晶為迎接奧運(yùn)會(huì)做準(zhǔn)備的數(shù)學(xué)情景,設(shè)計(jì)了四組有關(guān)7、8、9的用除法算式解決的數(shù)學(xué)問題。1、出示晶晶的問題:(1)做了56面彩旗,平均每行掛7面,能掛多少行?(2)做了56面彩旗,要掛成8行,平均每行掛多少面?(3)做了49顆五角星,平均分給7個(gè)小朋友,每人多少顆五角星?(4)準(zhǔn)備了27個(gè)氣球,平均9個(gè)擺一行,能擺多少行?2、解決晶晶的問題:讓學(xué)生根據(jù)"友情提示"的要求完成自學(xué)內(nèi)容后再小組交流、全班交流。在交流過程中引導(dǎo)學(xué)生觀察:56÷8=7和56÷7=8這兩個(gè)算式,從而發(fā)現(xiàn)一句乘法口訣可以計(jì)算兩個(gè)除法算式。
解:設(shè)每張300元的門票買了x張,則每張400元的門票買了(8-x)張,由題意得300x+400×(8-x)=2700,解得x=5,∴買400元每張的門票張數(shù)為8-5=3(張).答:每張300元的門票買了5張,每張400元的門票買了3張.方法總結(jié):解題的關(guān)鍵是熟練掌握列方程解應(yīng)用題的一般步驟:①根據(jù)題意找出等量關(guān)系;②列出方程;③解方程;④作答.三、板書設(shè)計(jì)本節(jié)課的教學(xué)先讓學(xué)生回顧上一節(jié)所學(xué)的知識(shí),復(fù)習(xí)鞏固方程的解法,讓學(xué)生進(jìn)一步明白解方程的步驟是逐漸發(fā)展的,后面的步驟是在前面步驟的基礎(chǔ)上發(fā)展而成的.然后通過一個(gè)實(shí)際問題,列出一個(gè)有括號的方程,大膽放手讓學(xué)生去探索、猜想各種解法,去嘗試各種解題的途徑,啟發(fā)學(xué)生在化歸思想影響下想到要去括號.
1、突出問題的應(yīng)用意識(shí).教師首先用一個(gè)學(xué)生感興趣的實(shí)際問題引人課題,然后運(yùn)用算術(shù)的方法給出解答。在各環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)的問題,使學(xué)生能圍繞問題展開思考、討論,進(jìn)行學(xué)習(xí).2、體現(xiàn)學(xué)生的主體意識(shí).本設(shè)計(jì)中,教師始終把學(xué)生放在主體的地位:讓學(xué)生通過對列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作與交流,得出問題的不同解答方法;讓學(xué)生對一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納.3、體現(xiàn)學(xué)生思維的層次性.教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決間題,然后再逐步引導(dǎo)學(xué)生列出含未知數(shù)的式子,尋找相等關(guān)系列出方程.在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中,教師都注意了學(xué)生思維的層次性.4、滲透建模的思想.把實(shí)際間題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問題抽象出方程模型的能力.
兩道例題,第一道題師生共同分析,第二道題學(xué)生自己分析。部分學(xué)生在運(yùn)用方程解答問題時(shí),等量關(guān)系的尋找還是有困難,規(guī)范解題不夠合理,仍需在作業(yè)過程中教師給予適當(dāng)?shù)闹笇?dǎo)。四、課堂小結(jié)這節(jié)課我們學(xué)習(xí)了有關(guān)打折銷售的知識(shí),其實(shí)類似的問題我們小學(xué)也遇到過,今天在分析實(shí)際問題時(shí)又用到了列表法,通過這節(jié)課的學(xué)習(xí),談?wù)勀阍谥R(shí)方面的收獲。提示學(xué)生通過對《日歷中的方程》《我變高了》以及本節(jié)《打折銷售》學(xué)習(xí)還有以往經(jīng)驗(yàn),讓學(xué)生分組討論,用一元一次方程解決實(shí)際問題的一般步驟是什么?目的:讓學(xué)生進(jìn)一步體會(huì)方程的作用,這里教師又提到學(xué)生的小學(xué)學(xué)習(xí),目的是想提示學(xué)生,將今天的方程解法與小學(xué)學(xué)過的算術(shù)方法相對比。此活動(dòng)的目的是使學(xué)生不再處于被動(dòng)狀態(tài),而成為積極的發(fā)現(xiàn)者。
方法總結(jié):讓利10%,即利潤為原來的90%.探究點(diǎn)三:求原價(jià)某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動(dòng)中的利潤率為10%,它的進(jìn)價(jià)為2000元,那么它的原價(jià)為多少元?解析:本題中的利潤為(2000×10%)元,銷售價(jià)為(原價(jià)×80%)元,根據(jù)公式建立起方程即可.解:設(shè)原價(jià)為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價(jià)為2750元.方法總結(jié):典例關(guān)系:售價(jià)=進(jìn)價(jià)+利潤,售價(jià)=原價(jià)×打折數(shù)×0.1,售價(jià)=進(jìn)價(jià)×(1+利潤率).三、板書設(shè)計(jì)本節(jié)課從和我們的生活息息相關(guān)的利潤問題入手,讓學(xué)生在具體情境中感受到數(shù)學(xué)在生活實(shí)際中的應(yīng)用,從而激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣.根據(jù)“實(shí)際售價(jià)=進(jìn)價(jià)+利潤”等數(shù)量關(guān)系列一元一次方程解決與打折銷售有關(guān)的實(shí)際問題.審清題意,找出等量關(guān)系是解決問題的關(guān)鍵.另外,商品經(jīng)濟(jì)問題的題型很多,讓學(xué)生觸類旁通,達(dá)到舉一反三,靈活的運(yùn)用有關(guān)的公式解決實(shí)際問題,提高學(xué)生的數(shù)學(xué)能力.
小明說:“我姐姐今年的年齡是我去年的年齡的2倍少6,”已知姐姐今年20歲,問小明今年幾歲?若取小明今年為x歲,則依據(jù)下面的等量關(guān)系式列方程:姐姐今年的年齡=小明去年年齡的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9總結(jié):根據(jù)乘法分配律和去括號法則(括號前面是“+”號,把“+”號和括號去掉,括號內(nèi)各項(xiàng)都不改變符號;括號前面是“-”號,把“-”號和括號去掉,括號內(nèi)各項(xiàng)都改變符號)去括號時(shí)要注意:1、 不要漏乘括號內(nèi)的任何一項(xiàng);2、若括號前面是“-”號,記住去括號后括號內(nèi)各項(xiàng)都變號.習(xí)題訓(xùn)練:解方程,如課本P122練一練1,P113練一練2等.思維拓展,解簡單的應(yīng)用題,如課本P123練一練3或補(bǔ)充一些題,如含小括號、中括號、大括號的方程(這方面課本安排幾乎沒有,只限淺顯問題,教師不必深究)
某文具店一支鉛筆的售價(jià)為1.2元,一支圓珠筆的售價(jià)為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣活動(dòng),鉛筆按原價(jià)打8折出售,圓珠筆按原價(jià)打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元.若設(shè)鉛筆賣出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設(shè)鉛筆賣出x支,根據(jù)“鉛筆按原價(jià)打8折出售,圓珠筆按原價(jià)打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元”,得出等量關(guān)系:x支鉛筆的售價(jià)+(60-x)支圓珠筆的售價(jià)=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結(jié):解題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找到題目當(dāng)中的等量關(guān)系,最后列方程.三、板書設(shè)計(jì)教學(xué)過程中,通過對多種實(shí)際問題情境的分析,感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義,通過觀察、歸納一元一次方程的概念,使學(xué)生在分析實(shí)際問題情境的活動(dòng)中體會(huì)數(shù)學(xué)與現(xiàn)實(shí)的密切聯(lián)系.
在游戲中鞏固知識(shí),并體會(huì)區(qū)間套的數(shù)學(xué)思想,有利于培養(yǎng)學(xué)生的數(shù)感。做游戲時(shí)間不能過長,我只安排在4分鐘內(nèi)完成,讓學(xué)生在學(xué)中樂和樂中學(xué)的興趣?!此摹等n總結(jié)今天這節(jié)課你們學(xué)了什么知識(shí)?有哪些收獲?(讓學(xué)生進(jìn)行互說來結(jié)束本節(jié)課)五、說板書板書是體現(xiàn)課文內(nèi)容脈落的載體。通過板書學(xué)生可以一目了然地弄請本節(jié)課你所授的內(nèi)容知識(shí)的過程,讓人永久深記,印象深刻。我的板書設(shè)計(jì)如下:一個(gè)數(shù)的因數(shù)和倍數(shù)的求法例1、18的因數(shù)有哪幾個(gè)?18的因數(shù)有:1、2、3、6、9、18一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,其中最小是1,最大的因數(shù)是它本身。方法:①哪兩個(gè)自然數(shù)積等于18,則哪兩個(gè)自然數(shù)就是這個(gè)數(shù)的因數(shù)。②哪個(gè)數(shù)能整除18,則哪個(gè)數(shù)就是這個(gè)數(shù)的因數(shù)。例2、2的倍數(shù)有哪些?一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。方法:用2與所有的自然數(shù)相乘,積就是它的倍數(shù)。
密鋪的歷史背景1619年——數(shù)學(xué)家奇柏(J.Kepler)第一個(gè)利用正多邊形鋪嵌平面。1891年——蘇聯(lián)物理學(xué)家弗德洛夫(E.S.Fedorov)發(fā)現(xiàn)了十七種不同的鋪砌平面的對稱圖案。 1924年——數(shù)學(xué)家波利亞(Polya)和尼格利(Nigeli)重新發(fā)現(xiàn)這個(gè)事實(shí)。最富趣味的是荷蘭藝術(shù)家埃舍爾(M.C. Escher)與密鋪。M.C. Escher于1898年生于荷蘭。他到西班牙旅行參觀時(shí),對一種名為阿罕伯拉宮(Alhambra)的建筑有很深刻的印象,這是一種十三世紀(jì)皇宮建筑物,其墻身、地板和天花板由摩爾人建造,而且鋪上了種類繁多、美輪美奐的馬賽克圖案。Escher 用數(shù)日復(fù)制了這些圖案,并得到啟發(fā),創(chuàng)造了各種并不局限于幾何圖形的密鋪圖案,這些圖案包括魚、青蛙、狗、人、蜥蜴,甚至是他憑空想像的物體。他創(chuàng)造的藝術(shù)作品,結(jié)合了數(shù)學(xué)與藝術(shù),給人留下深刻印象,更讓人對數(shù)學(xué)產(chǎn)生另一種看法。
煤的價(jià)格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費(fèi)用外,還需其他費(fèi)用400元,甲產(chǎn)品每噸售價(jià)4600元;生產(chǎn)1噸乙產(chǎn)品除原料費(fèi)用外,還需其他費(fèi)用500元,乙產(chǎn)品每噸售價(jià)5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關(guān)系式;(2)寫出y與x的函數(shù)關(guān)系式.(不要求寫自變量的取值范圍)解析:(1)因?yàn)榈V石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時(shí),那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動(dòng)態(tài)變化的兩個(gè)量;(2)題目中的等量關(guān)系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因?yàn)?m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時(shí),要找準(zhǔn)題中所給的等量關(guān)系,然后求解.
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個(gè),且要分別涉及時(shí)間、路和速度這三個(gè)量.意圖:旨在檢測學(xué)生的識(shí)圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對同學(xué)的回答,教師給予點(diǎn)評,對回答問題暫時(shí)有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時(shí)小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問題時(shí),可以直接從函數(shù)圖象上獲取信息解決問題,當(dāng)然也可以設(shè)法得出各自對應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計(jì)算解決問題。通過列出關(guān)系式解決問題時(shí),一般首先判斷關(guān)系式的特征,如兩個(gè)變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時(shí),可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點(diǎn)所表示的意義.探究點(diǎn)二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(diǎn)(0,1)可得b=1,再將點(diǎn)(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計(jì)一次函數(shù)的應(yīng)用單個(gè)一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實(shí)際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個(gè)體差異,使每個(gè)學(xué)生都學(xué)有所獲.
解:∵y=23x+a與y=-12x+b的圖象都過點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個(gè)一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點(diǎn)的坐標(biāo),即兩個(gè)一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書設(shè)計(jì)兩個(gè)一次函數(shù)的應(yīng)用實(shí)際生活中的問題幾何問題進(jìn)一步訓(xùn)練學(xué)生的識(shí)圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實(shí)際問題,在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí),發(fā)展形象思維.在解決實(shí)際問題的過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識(shí).
學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問題。(難點(diǎn))教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會(huì)解答上面的問題嗎?學(xué)完本解知識(shí),相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;
解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點(diǎn)A(4,3)是它們的交點(diǎn),∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點(diǎn)B在y軸的負(fù)半軸上,∴B點(diǎn)的坐標(biāo)為(0,-52).又∵點(diǎn)B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個(gè)已知點(diǎn)的坐標(biāo),然后運(yùn)用待定系數(shù)法將兩點(diǎn)的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類型三】 根據(jù)實(shí)際問題確定一次函數(shù)的表達(dá)式某商店售貨時(shí),在進(jìn)價(jià)的基礎(chǔ)上加一定利潤,其數(shù)量x與售價(jià)y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價(jià)y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時(shí)的售價(jià).
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。