三、典型例題,應(yīng)用新知例2、一個(gè)盒子中有兩個(gè)紅球,兩個(gè)白球和一個(gè)藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再?gòu)闹须S機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個(gè)紅球記為紅1、紅2;兩個(gè)白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,每個(gè)轉(zhuǎn)盤都被分成三個(gè)面積相等的三個(gè)扇形.請(qǐng)求出配成紫色的概率是多少?2.設(shè)計(jì)兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹(shù)狀圖和列表法求概率時(shí)應(yīng)注意什么?2. 你還有哪些收獲和疑惑?
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
教學(xué)目標(biāo):1.經(jīng)歷由實(shí)物抽象出幾何體的過(guò)程,進(jìn)一步發(fā)展空間觀念。2.會(huì)畫(huà)圓柱、圓錐、球的三視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握部分幾何體的三視圖的畫(huà)法,能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法教學(xué)過(guò)程設(shè)計(jì)一、實(shí)物觀察、空間想像設(shè)置:學(xué)生利用準(zhǔn)備好的大小相同的正方形方塊,搭建一個(gè)立體圖形,讓同學(xué)們畫(huà)出三視圖。而后,再要求學(xué)生利用手中12塊正方形的方塊實(shí)物,搭建2個(gè)立體圖形,并畫(huà)出它們的三視圖。學(xué)生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書(shū)設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問(wèn)題,總結(jié)常見(jiàn)的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
教學(xué)目標(biāo):1.會(huì)畫(huà)直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握直棱柱的三視圖的畫(huà)法。能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法一、實(shí)物觀察、空間想像觀察:請(qǐng)同學(xué)們拿出事先準(zhǔn)備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過(guò) 想像,再抽象出這兩個(gè)直棱柱的主視圖,左視圖和俯視圖。繪制:請(qǐng)你將抽象出來(lái)的三種視圖畫(huà)出來(lái),并與同伴交流。比較:小亮畫(huà)出了其中一個(gè)幾何體的主視圖、左視圖和俯視圖,你認(rèn)為他畫(huà)的對(duì)不對(duì)?談?wù)勀愕目捶?。拓展:?dāng)你手中的兩個(gè)直棱柱擺放的角度變化時(shí),它們的三種視圖是否會(huì)隨之改變?試一試。
(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說(shuō)明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實(shí)際距離AB= 250m,畫(huà)在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時(shí)刻物體高度與其影長(zhǎng)的比值為2:7,某 天同一時(shí)刻測(cè)得一棟樓的影長(zhǎng)為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實(shí)際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長(zhǎng)。
(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書(shū)設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過(guò)程,培養(yǎng)學(xué)生的探索能力.通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線長(zhǎng)為( );2))正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線互相垂直平分 C對(duì)角線平分一組對(duì)角 D對(duì)角線相等. 6)、正方形對(duì)角線長(zhǎng)6,則它的面積為_(kāi)________ ,周長(zhǎng)為_(kāi)_______. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過(guò)程的書(shū)寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫(huà)正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.探究點(diǎn)三:工程問(wèn)題一個(gè)道路工程,甲隊(duì)單獨(dú)施工9天完成,乙隊(duì)單獨(dú)做24天完成.現(xiàn)在甲乙兩隊(duì)共同施工3天,因甲另有任務(wù),剩下的工程由乙隊(duì)完成,問(wèn)乙隊(duì)還需幾天才能完成?解析:首先設(shè)乙隊(duì)還需x天才能完成,由題意可得等量關(guān)系:甲隊(duì)干三天的工作量+乙隊(duì)干(x+3)天的工作量=1,根據(jù)等量關(guān)系列出方程,求解即可.解:設(shè)乙隊(duì)還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊(duì)還需13天才能完成.方法總結(jié):找到等量關(guān)系是解決問(wèn)題的關(guān)鍵.本題主要考查的等量關(guān)系為:工作效率×工作時(shí)間=工作總量,當(dāng)題中沒(méi)有一些必須的量時(shí),為了簡(jiǎn)便,應(yīng)設(shè)其為1.三、板書(shū)設(shè)計(jì)“希望工程”義演題目特點(diǎn):未知數(shù)一般有兩個(gè),等量關(guān)系也有兩個(gè)解題思路:利用其中一個(gè)等量關(guān)系設(shè)未知數(shù),利用另一個(gè)等量關(guān)系列方程
解:設(shè)截取圓鋼的長(zhǎng)度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長(zhǎng)度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長(zhǎng)方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長(zhǎng)方體的體積”就是我們所要尋找的等量關(guān)系.探究點(diǎn)三:面積變化問(wèn)題將一個(gè)長(zhǎng)、寬、高分別為15cm、12cm和8cm的長(zhǎng)方體鋼坯鍛造成一個(gè)底面是邊長(zhǎng)為12cm的正方形的長(zhǎng)方體鋼坯.試問(wèn):是鍛造前的長(zhǎng)方體鋼坯的表面積大,還是鍛造后的長(zhǎng)方體鋼坯的表面積大?請(qǐng)你計(jì)算比較.解析:由鍛造前后兩長(zhǎng)方體鋼坯體積相等,可求出鍛造后長(zhǎng)方體鋼坯的高.再計(jì)算鍛造前后兩長(zhǎng)方體鋼坯的表面積,最后比較大小即可.解析:設(shè)鍛造后長(zhǎng)方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長(zhǎng)方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長(zhǎng)方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
從而為列方程找等量關(guān)系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個(gè)小組,為增強(qiáng)小組討論結(jié)果的展示起到了較好的作用.環(huán)節(jié)3中通過(guò)讓學(xué)生自己設(shè)計(jì)表格為討論的得出起到輔助作用.2.相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)本節(jié)課的設(shè)計(jì)中,通過(guò)學(xué)生多次的動(dòng)手操作活動(dòng),引導(dǎo)學(xué)生進(jìn)行探索,使學(xué)生確實(shí)是在舊知識(shí)的基礎(chǔ)上探求新內(nèi)容,探索的過(guò)程是沒(méi)有難度的任何學(xué)生都會(huì)動(dòng)手操作,每個(gè)學(xué)生都有體會(huì)的過(guò)程,都有感悟的可能,這種形式讓學(xué)生切身去體驗(yàn)問(wèn)題的情景,從而進(jìn)一步幫助學(xué)生理解比較復(fù)雜的問(wèn)題,再把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題.3.注意改進(jìn)的方面本節(jié)課由于構(gòu)題新穎有趣,所以一開(kāi)始就抓住了學(xué)生的求知欲望,課堂氣氛活躍,討論問(wèn)題積極主動(dòng).但由于學(xué)生發(fā)表自己的想法較多,使得教學(xué)時(shí)間不能很好把握,導(dǎo)致課堂練習(xí)時(shí)間緊張,今后予以改進(jìn).
1:甲、乙、丙三個(gè)村莊合修一條水渠,計(jì)劃需要176個(gè)勞動(dòng)力,由于各村人口數(shù)不等,只有按2:3:6的比例攤派才較合理,則三個(gè)村莊各派多少個(gè)勞動(dòng)力?2:某校組織活動(dòng),共有100人參加,要把參加活動(dòng)的人分成兩組,已知第一組人數(shù)比第二組人數(shù)的2倍少8人,問(wèn)這兩組人數(shù)各有多少人?目的:檢測(cè)學(xué)生本節(jié)課掌握知識(shí)點(diǎn)的情況,及時(shí)反饋學(xué)生學(xué)習(xí)中存在的問(wèn)題.實(shí)際活動(dòng)效果:從學(xué)生做題的情況看,大部分學(xué)生都能正確地列出方程,但其中一部分人并不能有意識(shí)地用“列表格”法來(lái)分析問(wèn)題,因此,教師仍需引導(dǎo)他們能學(xué)會(huì)用“列表格”這個(gè)工具,有利于以后遇上復(fù)雜問(wèn)題能很靈活地得到解決.六、歸納總結(jié):活動(dòng)內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識(shí):1. 兩個(gè)未知量,兩個(gè)等量關(guān)系,如何列方程;2. 尋找中間量;3. 學(xué)會(huì)用表格分析數(shù)量間的關(guān)系.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書(shū)設(shè)計(jì)用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識(shí)到配方法是理解求根公式的基礎(chǔ).通過(guò)對(duì)求根公式的推導(dǎo),認(rèn)識(shí)到一元二次方程的求根公式適用于所有的一元二次方程,操作簡(jiǎn)單.體會(huì)數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運(yùn)算能力,并養(yǎng)成良好的運(yùn)算習(xí)慣.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。