這樣設計,既復習了新課所必備的舊知,又自然合理地引入新課,一開始就緊緊吸引了學生的注意力,激發(fā)起學生的求知欲。(二)探索新知1、質(zhì)數(shù)和合數(shù)的意義(教學例1)。(1)讓學生拿出印發(fā)的寫有例1原題的練習紙,利用學過的求約數(shù)的方法,寫出1-12每個數(shù)的所有約數(shù)。(2)按照約數(shù)個數(shù)的多少進行分類,提出以下問題讓學生討論:①每一個數(shù)約數(shù)的個數(shù)相同嗎?各有多少個約數(shù)?②按照每個數(shù)的約數(shù)個數(shù)的多少,可以把這些數(shù)分成幾類?你認為是一類的用同一符號標出來。檢查學生討論情況并提問:你是怎樣分的?為什么這樣分?每一類各包括了哪幾個數(shù)?讓學生充分發(fā)表意見,然后師生共同歸納,并用投影出示三種分類情況:
(4)判斷中進行教學內(nèi)容的遞深,形成了反思——學習——強化的整個學習過程。在學生做出“6是倍數(shù)”的正確判斷之后,并不簡單換章,而是以此為契機“教學找一個數(shù)的因數(shù)”以談話導入,形成知識相互的聯(lián)系與區(qū)別,“談話:必須說清誰是誰的倍數(shù),誰是誰的因數(shù)。所以6可能是某些數(shù)的倍數(shù),也可能是某些數(shù)的因數(shù),那我們就來找一個數(shù)的因數(shù)。你能找出36所有的因數(shù)嗎?”(5)討論互評,自主學習放手讓學生學習找一個數(shù)的因數(shù),從無序到有序,從自尋到互學,請學生板書,學生評價,“提問:你是用什么方法找到一個數(shù)的因數(shù),可以介紹給大家嗎?還有其他方法嗎?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指導,掌握不失總結(jié)如:提問:5為什么不是36的因數(shù)?(因為36÷5不能整除,有余數(shù))
3.第三個環(huán)節(jié)是:鞏固深化,應用新知。首先讓學生完成課本76頁練習十三的第一題。主要是檢驗學生對復式折線統(tǒng)計圖繪制方法的掌握情況,并能對復式折線統(tǒng)計圖所表達的信息進行簡單的分析、比較。練習時,先讓學生在書上獨立完成,再說一說制圖的正確步驟,我用多媒體演示,并提醒學生注意最高氣溫和最低氣溫對應的折線各用什么表示,還要寫上數(shù)據(jù)和制圖日期,根據(jù)學生的制作情況,還可以組織學生討論一下,兩條折線上的數(shù)據(jù)怎樣寫就不混淆了?最后讓學生看圖回答題中的問題,這里重點幫助學生弄清“溫差”的含義,另外,在回答最后一個問題時,學生可能會說“我喜歡看統(tǒng)計圖”,我就重點讓學生說說為什么喜歡看統(tǒng)計圖?從而讓學生進一步體會復式折線統(tǒng)計圖的直觀、形象的優(yōu)越性
1、說課內(nèi)容:義務教育課程標準實驗教科書數(shù)學(人教版)五年級下冊第69頁例1、例2。2、教材地位及作用:學生在三年級已初步認識分數(shù),但那時所學的分數(shù)都是分子小于分母的分數(shù),所以,學習這節(jié)內(nèi)容,使學生比較全面地理解分數(shù)概念與培養(yǎng)對分數(shù)的數(shù)感,起著重要的作用。3、教學目標的確定:當今時代是經(jīng)濟全球化,文化多元化,社會信息化的時代,所以教育也要追隨時代發(fā)展的步伐。遵循課標提出的“為了每一位學生的發(fā)展”教育理念,確定本課教學目標如下:①使學生理解真分數(shù)和假分數(shù)的意義;②通過學習真分數(shù)、假分數(shù),加深學生對分數(shù)意義的理解;③使學生掌握真分數(shù),假分數(shù)的特征;④培養(yǎng)學生的觀察、比較、分析及概括的能力;⑤使學生在思考中、討論中,體會學習數(shù)學的快樂,體驗成功的喜悅。4、教學重點、難點:
教材分析異分母分數(shù)加減法是第十冊第五單元的一個學習內(nèi)容。在這個內(nèi)容之前,學生已掌握了分數(shù)的基本性質(zhì),學會了約分、通分、分數(shù)小數(shù)互化的方法,懂得了同分母分數(shù)加減法的算理,其中同分母分數(shù)加減法的計算方法是本節(jié)課最直接的知識起點。本節(jié)課的內(nèi)容又是進一步學習分數(shù)加減法混合運算的基礎,同時又是本單元的重點。五年級學生已經(jīng)能理解只有分數(shù)單位相同的分數(shù)才能相加減的算理,并且已經(jīng)初步具有用舊知識解決新問題的能力,也就是具有了一定的知識遷移能力。教學目標:1、理解異分母分數(shù)加減法的算理,并能正確計算。2、運用類比遷移的方法探索新知,培養(yǎng)推理能力和概括能力。3、滲透轉(zhuǎn)化的數(shù)學思想,體驗數(shù)學知識的探索性。教學重點:掌握異分母分數(shù)加減法的計算方法。教學難點:理解先通分,再加減的算理。教學流程:一、鋪墊。
三、總結(jié)規(guī)律、形成概念通過學生積極討論,充分調(diào)動了學生的積極參與學習,既發(fā)揮了學生學習的主動性,又培養(yǎng)了學生的發(fā)散性思維,引導學生總結(jié)出:有的分數(shù)可以化成有限小數(shù),有的分數(shù)不可以化成有限小數(shù),請同學們再看一看什么樣的分數(shù)可以化成有限小數(shù)?什么樣的分數(shù)不可以化成有限小數(shù)?啟發(fā)學生從分母的最小公倍數(shù)著手。 最后總結(jié)出:一個最簡分數(shù),如果分母中只含有素因數(shù)2和5,再無其它素因數(shù),那么這個分數(shù)就可以化成有限小數(shù),否則就不能化成有限小數(shù)。 例題2,請把下列小數(shù)化成分數(shù),說說你是怎樣把小數(shù)化成分數(shù)的? 0.06,0.4,1.8,2.45,1.465, 歸納:(學生為主,教師點撥)1、原來有幾位小數(shù),就在1后面寫幾個零作分母。原來的小數(shù)去掉小數(shù)點作分子。2、小數(shù)化成分數(shù)后,能約分的要約分。常用的因數(shù)是2和5。 對于小數(shù)如何化成分數(shù)的題目,課前了解到學生在小學時已學過把小數(shù)如何化成分數(shù)的方法,因而以學生練習為主,加以操練并鞏固,有錯誤的及時糾正。
1、完成練習十五第1題。(1)學生獨立完成計算。(2)指名板演,交流計算方法。提問:你是按照什么運算順序計算的?指出:分數(shù)加減混合運算的運算順序與整數(shù)相同,參與運算的幾個分數(shù),可以分步通分,分步計算;也可以一次通分,再計算。計算結(jié)果要約成最簡分數(shù)。[練習十五里異分母分數(shù)加減混合運算的純計算題比較少,僅第1題里有4道。教學中適當補充三個分數(shù)加減混合運算的練習也是可以的,但不要耗費學生過多的學習精力。如果學生計算發(fā)生錯誤,要仔細分析原因,有針對性地采取有效的解決措施。]2、完成練習十五第2題。(1)讀題,理解題意,說說自己的思路。(2)學生獨立完成解答。10(3)+ 5(1)+ 6(1)= 30(9)+ 30(6)+ 30(5)= 30(20)= 3(2)(小時)(3)交流匯報,集體評價。3、完成練習十五第3題。(1)學生獨立完成(1)、(2)小題,說說自己是怎樣想的?(2)鼓勵學生根據(jù)題中的已知條件提出用分數(shù)加、減法計算的不同問題,可以是一步計算的,也可以是兩步計算的,并讓學生嘗試解決提出的一些問題。
2、巧妙練習,強化意義《數(shù)學課程標準》指出:“引導學生把所學的數(shù)學知識應用到現(xiàn)實中去,以體會數(shù)學在現(xiàn)實生活中的應用價值?!睘榇耍以O計如下練習:為1/2這一分數(shù)配圖(課件),教師提出要求:大家看這里有一個分數(shù),你能試著給它配幾幅圖嗎?配出一幅的是達標,兩幅以上的是良好,三幅以上的是優(yōu)秀。借助激勵性的語言,學生定會躍躍欲試,在優(yōu)美的樂曲中大顯身手??赡軙霈F(xiàn)這樣的作品(課件)。那么同是分數(shù)1/2,為什么會出現(xiàn)這么多不同的作品呢?那是因為學生假設的整體不同,也就是單位“1”不同,因此所配出來的圖是不一樣的。(借助為分數(shù)配圖這一環(huán)節(jié),即強化了學生對分數(shù)意義的理解,又增強了學習的趣味性,符合小學生的心理特征,同時訓練學生的思維,培養(yǎng)了學生思維的廣闊性,靈活性。
【設計意圖:這是為例4的教學而設計的情境,起過渡作用,使學生明確通分的重要性,同時能促進學生的學習積極性、主動性?!浚ǘ┏鍪緦W習目標:(1)教學例3第一層:嘗試做例3,讓學生獨立探究,運用舊知識去解決新問題。教師針對這一問題,啟發(fā)點撥:這兩個分數(shù)能直接比較大小嗎?那么,能不能借助一些學過的知識,設法把這兩個分數(shù)化為能直接比較的分數(shù),再比較出它們的大小呢?學生:獨立探究,小組交流,全班匯報?!驹O計意圖:讓學生獨立嘗試探究,初步感知通分】第二層:看書自學例3,并出示自學 要求:1.書上是如何比較 和大小的?(動筆寫一寫) 2.什么叫公分母?3.什么叫通分?質(zhì)疑問難:“通過你們自學例3,還有什么疑問嗎?”“找兩個分數(shù)的公分母,為什么要找4和6的最小公倍數(shù)呢?”【設計意圖:通過自學理解什么是“公分母”和“通分”,使學生對新概念有一個自我內(nèi)化的過程】
2、81頁的做一做。做完后,引導學生觀察4和8;16和32這一組的最大公因數(shù)的特點:當較大數(shù)是較小數(shù)的倍數(shù)時,他們的最大公因數(shù)是較小數(shù)。1和7;8和9這一組數(shù)的最大公因數(shù)只有1。這樣的練習設計,目的是讓學生發(fā)現(xiàn)求最大公因數(shù)中的特殊情況。四、遷移運用,拓展探究寫出下列各分數(shù)分子和分母的最大公因數(shù)。7/21 8/28 16/40 6/15 目的是為下一節(jié)課《約分》做好了知識的鋪墊。全課總結(jié):通過今天的學習,你有什么收獲?同桌互說,指名匯報。這樣的總結(jié),從知識的層面上做了一次回顧。并及時的總結(jié)了解學情,真正做到“堂堂清”五、說板書設計我本節(jié)課的板書設計力圖全面而簡明的將本課的內(nèi)容傳遞給學生,便于學生理解和記憶。各位評委老師,我僅從教材、教法、學法、及教學過程、板書設計等幾個方面對本課進行說明。這只是我預設的一種方案,但是課堂千變?nèi)f化的生成效果,最終還要和學生、課堂相結(jié)合。說課的不足之處還請多多指教,我的說課到此結(jié)束,謝謝各位評委老師。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學模型.許多實際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學習二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學習求一些簡單的實際問題中二次函數(shù)的解析式.在教學中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
方法總結(jié):垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應手.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第2題【類型三】 動點問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點,求OP的長度范圍.解析:當點P處于弦AB的端點時,OP最長,此時OP為半徑的長;當OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.
一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關(guān)鍵,而且也是本章知識的難點。如何解決這一關(guān)鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結(jié)論.若能導出合理的結(jié)果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關(guān)鍵.